login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077051
Right summatory matrix, T, by antidiagonals.
5
1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
1,1
COMMENTS
If S=(s(1),s(2),...) is a sequence written as a row vector, then S*T is the summatory sequence of S; i.e. its n-th term is Sum{s(k): k|n}. T is the transpose of the left summatory matrix, A077049; T is the inverse of the right Moebius transformation matrix. See A077049 for further properties.
This is essentially the same as A051731, which includes only the triangle. Note that the standard in the OEIS is left to right antidiagonals, which would make this the left summatory matrix, and A077049 the right one. - Franklin T. Adams-Watters, Apr 08 2009
Sum of column k is A000005. - Geoffrey Critzer, Mar 29 2015
FORMULA
T(n, k)=1 if n|k else T(n, k)=0.
From Boris Putievskiy, May 08 2013: (Start)
As table T(n,k)= floor(n/k)-floor((n-1)/k).
As linear sequence a(n) = floor(A002260(n)/A004736(n)) - floor((A002260(n)-1)/A004736(n));
a(n) = floor(i/j) - floor((i-1)/j), where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). (End)
G.f. for row n: x^n/(1-x^n). - Geoffrey Critzer, Mar 29 2015
EXAMPLE
Northwest corner:
1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
MATHEMATICA
(* returns the northwest corner *) nn = 20; Table[PadRight[Drop[CoefficientList[Series[x^n/(1 - x^n), {x, 0, nn}], x], 1], nn], {n, 1, nn}] // Grid (* Geoffrey Critzer, Mar 29 2015 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Oct 22 2002
STATUS
approved