login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A077050
Left Moebius transformation matrix, M, by antidiagonals.
4
1, -1, 0, -1, 1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1
OFFSET
1,1
COMMENTS
If S=(s(1),s(2),...) is a sequence written as a column vector, then M*S is the Moebius transform of S; i.e. its n-th term is Sum{mu(k)*s(k): k|n}. If s(n)=n, then M*S(n)=phi(n), the Euler totient function, A000010. Row sums: 0 for n>=2.
LINKS
C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
FORMULA
M = T^(-1), where T is the left summatory matrix, A077049.
EXAMPLE
Northwest corner:
1 0 0 0 0 0
-1 1 0 0 0 0
-1 0 1 0 0 0
0 -1 0 1 0 0
-1 0 0 0 1 0
1 -1 -1 0 0 1
PROG
(PARI) nn=10; matrix(nn, nn, n, k, if (n % k, 0, 1))^(-1) \\ Michel Marcus, May 21 2015
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Clark Kimberling, Oct 22 2002
STATUS
approved