login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077047
Doubly restricted composition numbers: number of compositions of floor(n(n+2)/2) into exactly n positive integers each no more than n+1.
7
1, 1, 3, 12, 85, 780, 9331, 134512, 2306025, 45433800, 1018872811, 25506741084, 707972099627, 21518492021208, 712601187601395, 25491847538274240, 981272544393935569, 40392787067756440272, 1772592132899627652691
OFFSET
0,3
COMMENTS
a(n) is the maximum number of ordered partitions when using n numbers each ranging from 0 to n. This maximum occurs when partitioning n^2/2 for n even, or (n^2 - 1)/2 or (n^2 + 1)/2 for n odd. Example for a(3)=12: the partitions of 4 are (1,1,2) and (0,2,2), each having 3 ordered arrangements, and (0,1,3) having 6 arrangements; hence 3+3+6=12. For 5 the partitions are (1,2,2) and (1,1,3), with 3 ordered arrangements each, and (0,2,3) having 6 arrangements. - J. M. Bergot, Jul 11 2015
Largest coefficient of (1 + x + x^2 + ... + x^n)^n. - Vaclav Kotesovec, Mar 26 2016
FORMULA
a(n) = A077042(n+1, n).
a(n) ~ exp(1) * sqrt(6/Pi) * n^(n-3/2). - Vaclav Kotesovec, Mar 26 2016
EXAMPLE
a(3)=12 since the compositions of [3*5/2]=7 into exactly 3 positive integers each no more than 4 are 1+2+4, 1+3+3, 1+4+2, 2+1+4, 2+2+3, 2+3+2, 2+4+1, 3+1+3, 3+2+2, 3+3+2, 4+1+2, 4+2+1.
MAPLE
f:= proc(n) if n::odd then coeff(add(x^i, i=0..n)^n, x, (n^2-1)/2)
else coeff(add(x^i, i=0..n)^n, x, n^2/2) fi end proc:
map(f, [$0..40]); # Robert Israel, Nov 16 2016
MATHEMATICA
Table[Max[CoefficientList[Expand[Sum[x^k, {k, 0, n}]^n], x]], {n, 0, 20}] (* Vaclav Kotesovec, Mar 26 2016 *)
Table[Max[CoefficientList[((x^(n+1)-1)/(x-1))^n, x]], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 16 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Oct 22 2002
STATUS
approved