login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355322
LCM of Lucas numbers {L(1), L(2), ..., L(n)}.
1
1, 3, 12, 84, 924, 2772, 80388, 3778236, 71786484, 2943245844, 585705922956, 13471236227988, 7018514074781748, 1972202455013671188, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
OFFSET
1,2
MATHEMATICA
Table[LCM @@ LucasL[Range[n]], {n, 1, 16}]
Module[{nn=20, ln}, ln=LucasL[Range[nn]]; Table[LCM@@Take[ln, n], {n, nn}]] (* Harvey P. Dale, Sep 26 2024 *)
PROG
(PARI) Lucas(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032
a(n) = lcm(apply(Lucas, [1..n])); \\ Michel Marcus, Jul 17 2022
(Python)
from math import lcm
from sympy import lucas
def A355322(n): return lcm(*(lucas(i) for i in range(1, n+1))) # Chai Wah Wu, Jul 17 2022
CROSSREFS
Cf. A000032, A035105 (LCM of Fibonacci numbers), essentially the same as A062954.
Sequence in context: A147835 A032183 A225905 * A070825 A232934 A077047
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 16 2022
STATUS
approved