login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355325
Upper midsequence of the Fibonacci numbers (1,2,3,5,8,...) and Lucas numbers (1,3,4,7,11,...); see Comments.
2
1, 3, 4, 6, 10, 16, 25, 41, 66, 106, 172, 278, 449, 727, 1176, 1902, 3078, 4980, 8057, 13037, 21094, 34130, 55224, 89354, 144577, 233931, 378508, 612438, 990946, 1603384, 2594329, 4197713, 6792042, 10989754, 17781796, 28771550, 46553345, 75324895, 121878240
OFFSET
0,2
COMMENTS
Suppose that s = (s(n)) and t = (t(n)) are integer sequences. The lower midsequence, m = m(s,t), of s and t is defined by m(n) = floor((s(n) + t(n))/2). The upper midsequence, M = M(s,t), is defined by M(n) = ceiling((s(n) + t(n))/2).
Here, s(n) = F(n+2) and t(n) = L(n+1), for n >= 0, where F = A000045 (Fibonacci numbers) and L = A000032 (Lucas numbers).
FORMULA
a(n) = ceiling((A000045(n+2) + A000032(n+1))/2).
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) for n >= 5.
G.f.: (1 + 2 x - 2 x^3 - 2 x^4)/(1 - x - x^2 - x^3 + x^4 + x^5).
G.f.: ((1 + 2 x - 2 x^3 - 2 x^4)/((-1 + x) (-1 + x + x^2) (1 + x + x^2))).
a(n) = (10 + 3*((5 - 4*sqrt(5))*(1 - sqrt(5))^n + (1 + sqrt(5))^n*(5 + 4*sqrt(5)))/2^n - 10*cos(2*n*Pi/3))/30. - Stefano Spezia, Jul 17 2022
EXAMPLE
a(0) = 1 = ceiling((1+1)/2);
a(1) = 3 = ceiling((2+3)/2);
a(2) = 4 = ceiling((3+4)/2).
The Fibonacci and Lucas numbers are interspersed:
1 < 2 < 3 < 4 < 5 < 7 < 8 < 11 < 13 < 18 < 21 < 29 < ...
The midsequences m and M intersperse the ordered union of the Fibonacci and Lucas sequences, A116470, as indicated by the following table:
F m M L
1 1 1 1
2 2 3 3
3 3 4 4
5 6 6 7
8 9 10 11
13 15 16 18
21 25 25 29
MATHEMATICA
Table[Floor[(LucasL[n + 1] + Fibonacci[n + 2])/2], {n, 0, 50}] (* A355324 *)
Table[Ceiling[(LucasL[n + 1] + Fibonacci[n + 2])/2], {n, 0, 50}] (* A355325 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 16 2022
STATUS
approved