login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116470
All distinct Fibonacci and Lucas numbers.
6
0, 1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, 76, 89, 123, 144, 199, 233, 322, 377, 521, 610, 843, 987, 1364, 1597, 2207, 2584, 3571, 4181, 5778, 6765, 9349, 10946, 15127, 17711, 24476, 28657, 39603, 46368, 64079, 75025, 103682, 121393, 167761
OFFSET
0,3
COMMENTS
See A115339 for an essentially identical sequence.
FORMULA
a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5, a(6) = 7, a(n) = a(n-2) + a(n-4) for n>6.
a(2*n) = Lucas(n+1) = Fibonacci(n) + Fibonacci(n+2) for n>1.
a(2*n+1) = Fibonacci(n+3) for n>2.
G.f.: -x*(x^2+x+1)*(x^3+x+1)/(-1+x^4+x^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = FL((n + 2 + 3*(n mod 2))/2, n mod 2, 1/2)) for n >= 3. Here FL(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
MAPLE
FL := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
a := n -> `if`(n < 3, n, FL((n + 2 + 3*irem(n, 2))/2, irem(n, 2), 1/2)):
seq(simplify(a(n)), n=0..52); # Peter Luschny, Sep 03 2019
MATHEMATICA
CoefficientList[Series[-x*(x^2 + x + 1)*(x^3 + x + 1)/(-1 + x^4 + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
With[{nn=50}, Select[Union[Join[LucasL[Range[0, nn]], Fibonacci[Range[0, nn]]]], #<=200000&]] (* Harvey P. Dale, Jul 05 2019 *)
PROG
(Haskell)
import Data.List (transpose)
a116470 n = a116470_list !! n
a116470_list = 0 : 1 : 2 : concat
(transpose [drop 4 a000045_list, drop 3 a000032_list])
-- Reinhard Zumkeller, Aug 03 2013
(PARI) x='x+O('x^30); concat([0], Vec(-x*(x^2+x+1)*(x^3+x+1)/( -1+x^4 +x^2))) \\ G. C. Greubel, Dec 21 2017
(PARI) a(n)=if(n<6, n, if(n%2, fibonacci(n\2+3), fibonacci(n\2)+fibonacci(n\2+2))) \\ Charles R Greathouse IV, Oct 14 2021
CROSSREFS
Union of A000045 and A000032.
Cf. A288219 (even bisection).
Sequence in context: A199120 A118083 A241093 * A115649 A191168 A309879
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, Aug 13 2006
STATUS
approved