The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241093 Number of partitions p of n into distinct parts such that max(p) > 1 + 2*(number of parts of p). 3
 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 21, 26, 31, 38, 45, 54, 65, 77, 92, 108, 128, 149, 175, 203, 237, 274, 318, 366, 424, 486, 559, 640, 733, 836, 953, 1084, 1232, 1398, 1583, 1792, 2025, 2286, 2576, 2902, 3262, 3666, 4111, 4610, 5160, 5774 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Table of n, a(n) for n=0..55. FORMULA a(n) + A241086(n) + A241093(n) = A000009(n) for n >= 1. EXAMPLE a(12) counts these 8 partitions: {12}, {11,1}, {10,2}, {9,3}, 9,2,1}, {8,4}, {8,3,1}, {7,5}. MATHEMATICA z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*) Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*) Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*) Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*) Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*) CROSSREFS Cf. A241086, A241091, A241092, A000009. Sequence in context: A354816 A199120 A118083 * A116470 A115649 A191168 Adjacent sequences: A241090 A241091 A241092 * A241094 A241095 A241096 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)