login
A241093
Number of partitions p of n into distinct parts such that max(p) > 1 + 2*(number of parts of p).
3
0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 21, 26, 31, 38, 45, 54, 65, 77, 92, 108, 128, 149, 175, 203, 237, 274, 318, 366, 424, 486, 559, 640, 733, 836, 953, 1084, 1232, 1398, 1583, 1792, 2025, 2286, 2576, 2902, 3262, 3666, 4111, 4610, 5160, 5774
OFFSET
0,8
FORMULA
a(n) + A241086(n) + A241093(n) = A000009(n) for n >= 1.
EXAMPLE
a(12) counts these 8 partitions: {12}, {11,1}, {10,2}, {9,3}, {9,2,1}, {8,4}, {8,3,1}, {7,5}.
MATHEMATICA
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*)
Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*)
Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*)
Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*)
Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2014
STATUS
approved