login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions p of n into distinct parts such that max(p) > 1 + 2*(number of parts of p).
3

%I #10 Nov 09 2024 02:28:48

%S 0,0,0,0,1,1,1,2,3,4,5,7,8,11,13,17,21,26,31,38,45,54,65,77,92,108,

%T 128,149,175,203,237,274,318,366,424,486,559,640,733,836,953,1084,

%U 1232,1398,1583,1792,2025,2286,2576,2902,3262,3666,4111,4610,5160,5774

%N Number of partitions p of n into distinct parts such that max(p) > 1 + 2*(number of parts of p).

%F a(n) + A241086(n) + A241093(n) = A000009(n) for n >= 1.

%e a(12) counts these 8 partitions: {12}, {11,1}, {10,2}, {9,3}, {9,2,1}, {8,4}, {8,3,1}, {7,5}.

%t z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];

%t Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*)

%t Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*)

%t Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*)

%t Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*)

%t Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)

%Y Cf. A241086, A241091, A241092, A000009.

%K nonn,easy

%O 0,8

%A _Clark Kimberling_, Apr 18 2014