The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241094 Triangle read by rows: T(n,i) = number of gracefully labeled graphs with n edges that do not use the label i, 1 <= i <= n-1, n > 1. 3
 0, 1, 1, 4, 4, 4, 18, 24, 24, 18, 96, 144, 144, 96, 600, 960, 1080, 1080, 960, 600, 4320, 7200, 8460, 8460, 8460, 7200, 4320, 35280, 60840, 75600, 80640, 80640, 75600, 60480, 35280, 322560, 564480, 725760, 806400, 806400, 806400, 725760, 564480, 322560 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS A graph with n edges is graceful if its vertices can be labeled with distinct integers in the range 0,1,...,n in such a way that when the edges are labeled  with the absolute differences between the labels of their end-vertices, the n edges have the distinct labels 1,2,...,n. LINKS C. Barrientos and S. M. Minion, Enumerating families of labeled graphs, J. Integer Seq., 18(2015), article 15.1.7. J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6. David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388. FORMULA For n >=2, if 1 <= i <= floor(n/2), g(n,i) = (n-2)!*(n-1-i)*i; if ceiling((n+1)/2) <= i <= n-1, g(n,i) = (n-2)!*(n-i)*(i-1). EXAMPLE For n=7 and i=3, g(7,3) = 1080. For n=7 and i=5, g(7,5) = 960. Triangle begins: [n\i]  [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8] [2]     0; [3]     1,      1; [4]     4,      4,      4; [5]    18,     24,     24,     18; [6]    96,    144,    144,    144,     96; [7]   600,    960,   1080,   1080,    960,    600; [8]  4320,   7200,   8640,   8640,   8640,   7200,   4320; [9] 35280,  60480,  75600,  80640,  80640,  75600,  60480,  35280; ... - Bruno Berselli, Apr 23 2014 MAPLE Labeled:=(i, n) piecewise(n<2 or i<1, -infinity, 1 <= i <= floor(n/2), GAMMA(n-1)*(n-1-i)*i, ceil((n+1)/2) <= i <= n-1, GAMMA(n-1)*(n-i)*(i-1), infinity): MATHEMATICA n=10; (* This number must be replaced every time in order to produce the different entries of the sequence *) For[i = 1, i <= Floor[n/2], i++, g[n_, i_]:=(n-2)!*(n-1-i)*i; Print["g(", n, ", ", i, ")=", g[n, i]]] For[i = Ceiling[(n+1)/2], i <= (n-1), i++, g[n_, i_]:=(n-2)!*(n-i)*(i-1); Print["g(", n, ", ", i, ")=", g[n, i]]] PROG (MAGMA) /* As triangle: */ [[i le Floor(n/2) select Factorial(n-2)*(n-1-i)*i else Factorial(n-2)*(n-i)*(i-1): i in [1..n-1]]: n in [2..10]]; // Bruno Berselli, Apr 23 2014 CROSSREFS Cf. A001563, A003022, A004137, A005488, A006967, A033472, A081621, A103300, A117747, A212661. Sequence in context: A231700 A231746 A275858 * A319257 A131946 A034896 Adjacent sequences:  A241091 A241092 A241093 * A241095 A241096 A241097 KEYWORD nonn,tabl,easy AUTHOR Christian Barrientos and Sarah Minion, Apr 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 13:43 EST 2021. Contains 349463 sequences. (Running on oeis4.)