login
A241091
Number of partitions p of n into distinct parts such that max(p) <= 1 + 2*(number of parts of p).
3
0, 1, 1, 2, 1, 2, 3, 3, 3, 4, 5, 5, 7, 7, 9, 10, 11, 12, 15, 16, 19, 22, 24, 27, 30, 34, 37, 43, 47, 53, 59, 66, 72, 82, 88, 99, 109, 120, 131, 146, 160, 176, 194, 212, 233, 256, 279, 304, 334, 362, 396, 431, 471, 510, 558, 604, 659, 714, 776, 839, 913, 985
OFFSET
0,4
FORMULA
a(n) = A241086(n) + A241092(n) for n >= 0.
EXAMPLE
a(12) counts these 5 partitions: 741, 732, 651, 642, 6321, 543, 5421.
MATHEMATICA
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*)
Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*)
Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*)
Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*)
Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2014
STATUS
approved