The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241092 Number of partitions p of n into distinct parts such that max(p) = 1 + 2*(number of parts of p). 3
 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 7, 7, 8, 9, 10, 10, 12, 13, 15, 17, 19, 21, 25, 26, 29, 32, 35, 38, 42, 46, 51, 57, 62, 69, 76, 83, 90, 100, 107, 117, 127, 139, 150, 165, 178, 195, 212, 231, 250, 273, 294, 319, 346, 373, 402 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS Table of n, a(n) for n=0..65. FORMULA a(n) + A241086(n) + A241093(n) = A000009(n) for n >= 1. a(n) = A241091(n) - A241086(n) for n >= 0. EXAMPLE a(12) counts these 5 partitions: 741, 732, 651, 642, 6321, 543, 5421. MATHEMATICA z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*) Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*) Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*) Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*) Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*) CROSSREFS Cf. A241086, A241091, A241093, A000009. Sequence in context: A239499 A241139 A294242 * A055656 A078571 A362970 Adjacent sequences: A241089 A241090 A241091 * A241093 A241094 A241095 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 17:13 EDT 2024. Contains 375173 sequences. (Running on oeis4.)