

A241139


Number of nonprimes in factorization of n! over distinct terms of A050376.


4



0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 7, 7, 4, 4, 5, 5, 6, 6, 8, 9, 10, 10, 9, 9, 11, 11, 12, 12, 10, 9, 8, 8, 9, 10, 11, 11, 12, 12, 11, 12, 14, 14, 16, 15, 15, 15, 13, 13, 14, 14, 14, 14, 16, 16, 16, 16, 17, 19, 21, 21, 18, 18, 19, 16, 14, 14, 16, 16, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,5


REFERENCES

V. S. Shevelev, Multiplicative functions in the FermiDirac arithmetic, Izvestia Vuzov of the NorthCaucasus region, Nature sciences 4 (1996), 2843 [Russian].


LINKS



FORMULA



EXAMPLE

Factorization of 4! over distinct terms of A050376 is 4! = 2*3*4. This factorization contains only one A050376nonprime. So a(4)=1.


MATHEMATICA

b[n_] := 2^(1 + Position[Reverse@IntegerDigits[n, 2], _?(# == 1 &)]) // Flatten; a[n_] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; Length[Select[(b /@ v) // Flatten, # > 1 &]]]; Array[a, 73, 2] (* Amiram Eldar, Sep 17 2019 *)


PROG

(PARI) a(n)={my(f=factor(n!)[, 2]); sum(i=1, #f~, hammingweight(f[i]>>1))} \\ Andrew Howroyd, Sep 17 2019


CROSSREFS

Cf. A177329, A177333, A177334, A240537, A240606, A240619, A240620, A240668, A240669, A240670, A240672, A240695, A240751, A240755, A240764, A240905, A240906, A241123, A241124.


KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



