OFFSET
1,1
COMMENTS
By the definition, the representation of a(n)! as a product of distinct terms of A050376 should contain the first n terms of A050376 and there is no restriction on the distribution of other factors of this product.
a(38) > 2 * 10^11. - Hiroaki Yamanouchi, Oct 01 2014
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..37
EXAMPLE
5! = 2*3*4*5. We have the first 4 terms of A050376, so a(4) = 5.
MATHEMATICA
bad[n_, pp_, mo_] := Catch[Do[If[ Mod[(n - Total@ IntegerDigits[n, pp[[i]]]) /(pp[[i]] - 1), mo[[i]] + 1] != mo[[i]], Throw@ True], {i, Length@ pp}]; False]; a[n_]:= Block[{fa, mo, pp, k}, fa = FactorInteger[ Times @@ Select[Range[2, Prime[n]], (f = FactorInteger@# ; Length[f] == 1 && IntegerQ[Log[2, f[[1, 2]]]]) &, n]]; pp = First /@ fa; mo = Last /@ fa; k = fa[[-1, 1]]; While[ bad[k, pp, mo], k++]; k]; Array[a, 15] (* Giovanni Resta, Apr 11 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 10 2014
EXTENSIONS
a(5)-a(23) from Giovanni Resta, Apr 11 2014
a(24)-a(33) from Hiroaki Yamanouchi, Oct 01 2014
STATUS
approved