login
A240606
Let the prime factorization of (2*n)! be 2^e_1*3^e_2*5^e_3*...; then a(n) = maximal k such that e_1, ..., e_k are all even..
20
0, 0, 2, 0, 3, 1, 0, 0, 2, 4, 0, 3, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 5, 0, 0, 6, 0, 1, 3, 0, 0, 1, 1, 0, 3, 0, 0, 4, 2, 0, 0, 1, 0, 2, 2, 0, 5, 0, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 3, 0, 0, 1, 0, 6, 1, 0, 2, 0, 0, 4, 5, 0, 0, 2
OFFSET
1,3
COMMENTS
See comment in A240537. According to Berend's theorem, the sequence is unbounded.
REFERENCES
P. Erdős, P. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathematique, Imprimerie Kunding, Geneva, 1980.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
D. Berend, Parity of exponents in the factorization of n!, J. Number Theory, 64 (1997), 13-19.
Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, 100 (2003), 326-331.
EXAMPLE
(2*10)! = 2432902008176640000 = 2^18 * 3^8 * 5^4 * 7^2 * 11 * 13 * 17 * 19, and the first 4 exponents are even, so a(10) = 4.
MATHEMATICA
Map[Count[First[Split[Mod[Last[Transpose[FactorInteger[(2*#)!]]], 2]]], 0]&, Range[75]] (* Peter J. C. Moses, Apr 09 2014 *)
PROG
(Sage) def a(n):
f = list(factor(factorial(2*n)))
c = -1
for pf in f:
c = c + 1
if pf[1] % 2:
return c # Ralf Stephan, Apr 09 2014
(PARI) fv(n, p)=my(s); while(n\=p, s+=n); s
a(n)=n*=2; my(s); forprime(p=2, , if(fv(n, p)%2, return(s), s++)) \\ Charles R Greathouse IV, Apr 09 2014
CROSSREFS
Cf. A240537.
Sequence in context: A298610 A186492 A137448 * A335889 A324379 A035165
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 09 2014
EXTENSIONS
More terms and example from Ralf Stephan, Apr 09 2014
STATUS
approved