login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240605 Total number of distinct sequences for the number of double occupancy in the underlying Fermion problem (see comment), i.e., the number of distinct hopping sequences (cf. A198761, A225823) in four-colored rooted trees with n nodes, starting and ending with the same coloring in two colors (cf. A198760, corresponding to zero double-occupancy). 1
1, 2, 10, 59, 397, 2878, 21266, 162732, 1253128, 9839212, 77644825, 620377508, 4981522538, 40351448045, 328421827064, 2690586461296, 22139293490054, 183106636176023, 1520309861062921, 12675106437486945, 106033283581264574, 890035798660219755 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

The sequences of double-occupancy are generated by the operators T_{+U}, T_{-U}, and T_{0} defined in eq. (8) in Phys. Rev. B 85, 045105 (2012), see below.

Also the number of "island altitude-profiles" of length 2n-1, see examples, which satisfy the following requirements:

(1) Every profile starts and ends at sea-level (zero double-occupancies).

(2) The height increases and decreases with every step at most one unit.

(3) The maximum height does not go beyond floor(n/2).

(4) The minimum height does not fall below sea-level.

(5) Sea-level could only be reached after an even number of steps.

(6) For n even, no plateaus exist at maximum height (= n/2).

(7) For n even, two peaks at maximum height have an even distance.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 2..400

E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938 [cond-mat.str-el], 2011 (Physical Review B 85, 045105, Jan 2012)

E. Kalinowski and M. Paech, Table of island altitude-profiles I(n,k) up to order n = 6.

M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)

EXAMPLE

n = 2

  0 1 0  |->  T_{+U} T_{-U}  |->  /\

n = 3

                                                     __

  0 1 1 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{-U}  |->  /  \

  0 1 0 1 0  |->  T_{+U} T_{-U} T_{+U} T_{-U}  |->  /\/\

n = 4

                                                                       ____

  0 1 1 1 1 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{ 0} T_{ 0} T_{-U}  |->  /    \

                                                                       __/\

  0 1 1 1 2 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{+U} T_{-U} T_{-U}  |->  /    \

                                                                       __

  0 1 1 1 0 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{-U} T_{+U} T_{-U}  |->  /  \/\

                                                                       _/\_

  0 1 1 2 1 1 0  |->  T_{+U} T_{ 0} T_{+U} T_{-U} T_{ 0} T_{-U}  |->  /    \

                                                                       /\__

  0 1 2 1 1 1 0  |->  T_{+U} T_{+U} T_{-U} T_{ 0} T_{ 0} T_{-U}  |->  /    \

                                                                       /\/\

  0 1 2 1 2 1 0  |->  T_{+U} T_{+U} T_{-U} T_{+U} T_{-U} T_{-U}  |->  /    \

                                                                       /\

  0 1 2 1 0 1 0  |->  T_{+U} T_{+U} T_{-U} T_{-U} T_{+U} T_{-U}  |->  /  \/\

                                                                         __

  0 1 0 1 1 1 0  |->  T_{+U} T_{-U} T_{+U} T_{ 0} T_{ 0} T_{-U}  |->  /\/  \

                                                                         /\

  0 1 0 1 2 1 0  |->  T_{+U} T_{-U} T_{+U} T_{+U} T_{-U} T_{-U}  |->  /\/  \

  0 1 0 1 0 1 0  |->  T_{+U} T_{-U} T_{+U} T_{-U} T_{+U} T_{-U}  |->  /\/\/\

MAPLE

b:= proc(x, y, m, v, d) option remember; `if`(y>x or y<0 or

       y>m or v and y=m and d=1 or y=0 and irem(x, 2)=1, 0,

      `if`(x=0, 1, `if`(v and y=m or y=0, 0, b(x-1, y, m, v,

      `if`(d=2, 2, 1-d)))+ `if`(y=0 or y=1 and irem(x, 2)=0, 0,

       b(x-1, y-1, m, v, `if`(d=2, `if`(v and y=m, 1, 2), 1-d)))+

       b(x-1, y+1, m, v, `if`(d=2, 2, 1-d))))

    end:

a:= n-> b(2*n-2, 0, iquo(n, 2, 'r'), r=0, 2):

seq(a(n), n=2..30);  # Alois P. Heinz, May 09 2014

MATHEMATICA

b[x_, y_, m_, v_, d_] := b[x, y, m, v, d] = If[y>x || y<0 || y>m || v && y == m && d==1 || y==0 && Mod[x, 2]==1, 0, If[x==0, 1, If[v && y==m || y==0, 0, b[x-1, y, m, v, If[d==2, 2, 1-d]]] + If[y==0 || y==1 && Mod[x, 2]==0, 0, b[x-1, y-1, m, v, If[d==2, If[v && y==m, 1, 2], 1-d]]] + b[x-1, y+1, m, v, If[d==2, 2, 1-d]]]]; a[n_] := b[2*n-2, 0, Quotient[n, 2], Mod[ n, 2]==0, 2]; Table[a[n], {n, 2, 30}] (* Jean-Fran├žois Alcover, Feb 24 2016, after Alois P. Heinz *)

CROSSREFS

Cf. A198760, A198761, A225823.

Sequence in context: A186758 A262910 A202482 * A095993 A029725 A246480

Adjacent sequences:  A240602 A240603 A240604 * A240606 A240607 A240608

KEYWORD

nonn

AUTHOR

Martin Paech, Apr 09 2014

EXTENSIONS

Terms a(16) and a(17) are calculated on a HP Integrity Superdome 2-16s by courtesy of Hewlett-Packard Development Company, L.P., by Martin Paech, May 08 2014 (The used algorithm generates explicitly all distinct sequences of double-occupancy, i.e. all valid "island altitude-profiles", and counts them.)

a(18)-a(23) from Alois P. Heinz, May 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 14:18 EST 2021. Contains 341632 sequences. (Running on oeis4.)