login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202482
Expansion of (1-(1-9*x)^(1/3))/(4-(1-9*x)^(1/3)).
1
1, 2, 10, 59, 385, 2672, 19336, 144218, 1100530, 8549888, 67386652, 537437222, 4328934754, 35162809688, 287688325672, 2368563539171, 19608128003473, 163116600371846, 1362822870625762, 11430476370562259
OFFSET
1,2
LINKS
FORMULA
a(n):=1/n*sum(i=1..n, i*sum(k=0..n-i, binomial(k,n-k-i)*3^(k)*(-1)^(n-k+1)*binomial(n+k-1,n-1))).
Recurrence: 7*(n-1)*n*a(n) = (n-1)*(125*n - 252)*a(n-1) - 9*(61*n^2 - 309*n + 388)*a(n-2) - 9*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 9^n/(16*Gamma(2/3)*n^(4/3)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[(1/x) (1- (1 - 9 x)^(1/3)) / (4 - (1 - 9 x)^(1/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
Module[{c=Surd[1-9x, 3]}, Rest[CoefficientList[Series[(1-c)/(4-c), {x, 0, 20}], x]]] (* Harvey P. Dale, Feb 10 2019 *)
PROG
(Maxima)
a(n):=sum(i*sum(binomial(k, n-k-i)*3^(k)*(-1)^(n-k+1)*binomial(n+k-1, n-1), k, 0, n-i), i, 1, n)/n;
CROSSREFS
Sequence in context: A262910 A370281 A351502 * A240605 A095993 A029725
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 20 2011
EXTENSIONS
Typo in Mathematica code fixed by Vincenzo Librandi, Jun 04 2013
STATUS
approved