login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202482 Expansion of (1-(1-9*x)^(1/3))/(4-(1-9*x)^(1/3)). 1
1, 2, 10, 59, 385, 2672, 19336, 144218, 1100530, 8549888, 67386652, 537437222, 4328934754, 35162809688, 287688325672, 2368563539171, 19608128003473, 163116600371846, 1362822870625762, 11430476370562259 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

FORMULA

a(n):=1/n*sum(i=1..n, i*sum(k=0..n-i, binomial(k,n-k-i)*3^(k)*(-1)^(n-k+1)*binomial(n+k-1,n-1))).

Recurrence: 7*(n-1)*n*a(n) = (n-1)*(125*n - 252)*a(n-1) - 9*(61*n^2 - 309*n + 388)*a(n-2) - 9*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Oct 20 2012

a(n) ~ 9^n/(16*Gamma(2/3)*n^(4/3)). - Vaclav Kotesovec, Oct 20 2012

MATHEMATICA

CoefficientList[Series[(1/x) (1- (1 - 9 x)^(1/3)) / (4 - (1 - 9 x)^(1/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Module[{c=Surd[1-9x, 3]}, Rest[CoefficientList[Series[(1-c)/(4-c), {x, 0, 20}], x]]] (* Harvey P. Dale, Feb 10 2019 *)

PROG

(Maxima)

a(n):=sum(i*sum(binomial(k, n-k-i)*3^(k)*(-1)^(n-k+1)*binomial(n+k-1, n-1), k, 0, n-i), i, 1, n)/n;

CROSSREFS

Sequence in context: A340987 A186758 A262910 * A240605 A095993 A029725

Adjacent sequences:  A202479 A202480 A202481 * A202483 A202484 A202485

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Dec 20 2011

EXTENSIONS

Typo in Mathematica code fixed by Vincenzo Librandi, Jun 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 19:13 EST 2021. Contains 341928 sequences. (Running on oeis4.)