login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202483
Triangle T(n,m) = coefficient of x^n in expansion of [(1-(1-9*x)^(1/3))/(4-(1-9*x)^(1/3))]^m = sum(n>=m, T(n,m) x^n).
1
1, 2, 1, 10, 4, 1, 59, 24, 6, 1, 385, 158, 42, 8, 1, 2672, 1106, 305, 64, 10, 1, 19336, 8064, 2283, 508, 90, 12, 1, 144218, 60541, 17484, 4052, 775, 120, 14, 1, 1100530, 464650, 136315, 32560, 6565, 1114, 154, 16, 1
OFFSET
1,2
COMMENTS
The matrix inverse starts
1;
-2,1;
-2,-4,1;
1,0,-6,1;
7,10,6,-8,1;
16,14,19,16,-10,1;
28,0,-3,20,30,-12,1;
43,-35,-60,-52,5,48,-14,1;
61,-76,-89,-112,-125,-34,70,-16,1; - R. J. Mathar, Mar 22 2013
FORMULA
T(n,m)=sum(i=m..n, i*(-1)^(i-m) *binomial(i-1,m-1) *sum(k=0..n-i, binomial(k,n-k-i) *3^k *(-1)^(n-k-i) *binomial(n+k-1,n-1)))/n.
EXAMPLE
1
2, 1,
10, 4, 1,
59, 24, 6, 1,
385, 158, 42, 8, 1,
2672, 1106, 305, 64, 10, 1,
19336, 8064, 2283, 508, 90, 12, 1
MAPLE
A202483 := proc(n, m)
if m < 1 or m > n then
0;
else
a := 0 ;
for i from m to n do
a := a+ i*(-1)^(i-m)*binomial(i-1, m-1) *add( binomial(k, n-k-i) *3^k *(-1)^(n-k-i) *binomial(n+k-1, n-1), k=0..n-i) ;
end do:
return a/n ;
end if;
end proc: # R. J. Mathar, Mar 22 2013
PROG
(Maxima)
T(n, m):=sum(i*(-1)^(i-m)*binomial(i-1, m-1)*sum(binomial(k, n-k-i)*3^(k)*(-1)^(n-k-i)*binomial(n+k-1, n-1), k, 0, n-i), i, m, n)/n;
CROSSREFS
Sequence in context: A163235 A142963 A099755 * A110682 A110327 A105615
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Dec 20 2011
STATUS
approved