login
A110327
Triangle read by rows: T(n,k) = n!*Pell(n-k+1)/k!, where Pell(n)=A000129(n).
5
1, 2, 1, 10, 4, 1, 72, 30, 6, 1, 696, 288, 60, 8, 1, 8400, 3480, 720, 100, 10, 1, 121680, 50400, 10440, 1440, 150, 12, 1, 2056320, 851760, 176400, 24360, 2520, 210, 14, 1, 39715200, 16450560, 3407040, 470400, 48720, 4032, 280, 16, 1, 862928640
OFFSET
0,2
COMMENTS
The row polynomials form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013.
FORMULA
Column k has e.g.f. x^k/(k!*(1-2x-x^2)).
E.g.f. Sum T(n,k) x^n y^k / n! = e^{xy}/(1-2x-x^2). - Franklin T. Adams-Watters, Jan 12 2007
EXAMPLE
Rows begin
1;
2,1;
10,4,1;
72,30,6,1;
696,288,60,8,1;
8400,3480,720,100,10,1;
121680,50400,10440,1440,150,12,1;
CROSSREFS
Cf. A000129, A110328 (row sums), A110329 (diagonal sums), A110330 (matrix inverse).
Sequence in context: A099755 A202483 A110682 * A105615 A136216 A121334
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, Jul 20 2005
EXTENSIONS
Edited by Franklin T. Adams-Watters, Jan 12 2007
STATUS
approved