login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240607
a(n) = 2*a(n-2) + a(n-3) + a(n-4) for n>=4, a(n) = binomial(n,3) for n<4.
1
0, 0, 0, 1, 0, 2, 1, 5, 4, 13, 14, 35, 45, 97, 139, 274, 420, 784, 1253, 2262, 3710, 6561, 10935, 19094, 32141, 55684, 94311, 162603, 276447, 475201, 809808, 1389452, 2371264, 4063913, 6941788, 11888542, 20318753, 34782785, 59467836, 101772865, 174037210
OFFSET
0,6
COMMENTS
a(n) = term (4,1) in the 4 X 4 matrix [0,1,1,1; 1,0,1,0; 0,1,0,0; 0,0,1,0]^n. There are 96 ways to define the sequence as an element of the n-th power of a 4 X 4 {0,1}-matrix. These are listed in the second Gribble link.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 50 terms from Christopher Hunt Gribble)
Christopher Hunt Gribble, Matrix elements
FORMULA
G.f.: -x^3 / (x^4+x^3+2*x^2-1). - Colin Barker, Apr 20 2014
MAPLE
a:= proc(n) option remember; `if`(n<4, binomial(n, 3),
2*a(n-2) +a(n-3) +a(n-4))
end:
seq(a(n), n=0..50);
# second Maple program using the {0, 1}-matrix:
a:= n-> (<<0|1|1|1>, <1|0|1|0>, <0|1|0|0>, <0|0|1|0>>^n)[4, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, Apr 26 2014
MATHEMATICA
LinearRecurrence[{0, 2, 1, 1}, {0, 0, 0, 1, 0, 2, 1, 5, 4}, 50] (* Harvey P. Dale, Jul 01 2015 *)
PROG
(PARI) concat([0, 0, 0], Vec(-x^3/(x^4+x^3+2*x^2-1) + O(x^100))) \\ Colin Barker, Apr 20 2014
CROSSREFS
Cf. A239748.
Sequence in context: A290889 A120924 A079285 * A304298 A309976 A257516
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Apr 20 2014
STATUS
approved