login
A257516
Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at even level.
1
1, 0, 1, 0, 2, 1, 5, 4, 15, 15, 48, 57, 162, 218, 570, 842, 2070, 3284, 7709, 12922, 29299, 51255, 113220, 204781, 443574, 823554, 1757947, 3331818, 7035054, 13552699, 28387680, 55401396, 115369417, 227501256, 471780468, 938107057, 1939727280, 3883120002
OFFSET
0,5
FORMULA
G.f.: (1-x^3-sqrt((1-x^3)*(1-4*x^2-x^3)))/(2*x^2).
EXAMPLE
For n=6 we have 5 paths: UDUDUD, UUDDUD, UDUUDD, UUUDDD and UUDUDD
MATHEMATICA
CoefficientList[Series[(1-x^3-Sqrt[(1-x^3)*(1-4*x^2-x^3)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2015 *)
CROSSREFS
Sequence in context: A240607 A304298 A309976 * A346800 A124660 A217104
KEYWORD
nonn
AUTHOR
STATUS
approved