The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257519 Number of Motzkin paths of length n with no peaks at level 4. 1
 1, 1, 2, 4, 9, 21, 51, 127, 322, 827, 2145, 5607, 14751, 39020, 103713, 276848, 741901, 1995340, 5384554, 14576673, 39579527, 107776557, 294283193, 805649528, 2211176173, 6083560542, 16776970140, 46372110274, 128456563024, 356600559820, 991986172469, 2765030171165, 7722156349298, 21607098380159 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x+x^2*(1-M(x)))))), where M(x) is the g.f. of Motzkin numbers A001006. a(n) ~ 3^(n+7/2)/(98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 27 2015 EXAMPLE For n=4 we have 9 paths: HHHH, UDUD, UHDH, HUHD, UHHD, UDHH, HUDH, HHUD and UUDD MATHEMATICA CoefficientList[Series[1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x+x^2*(1-(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2)))))), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 27 2015 *) PROG (PARI) x='x+O('x^50); Vec(1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x+x^2*(1-(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2))))))) \\ G. C. Greubel, Jun 03 2017 CROSSREFS Cf. A089372, A257300, A257104. Sequence in context: A051529 A230554 A005207 * A257387 A094286 A094287 Adjacent sequences: A257516 A257517 A257518 * A257520 A257521 A257522 KEYWORD nonn AUTHOR José Luis Ramírez Ramírez, Apr 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)