login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090345
Number of Motzkin paths of length n with no level steps at even level.
9
1, 0, 1, 1, 3, 5, 12, 24, 55, 119, 272, 612, 1411, 3247, 7565, 17667, 41561, 98099, 232696, 553784, 1322813, 3169065, 7614583, 18342921, 44294991, 107200829, 259983346, 631718606, 1537737567, 3749440151, 9156561590, 22394270034, 54845701243, 134497468359
OFFSET
0,5
COMMENTS
Hankel transform of a(n) is A000012. Hankel transform of a(n+1) is 0,-1,0,1,0,-1,0,... or -[x^n](x/(1+x^2)). Hankel transform of a(n+2) is A008619(n+1). - Paul Barry, Mar 23 2011
Number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U(k) = (k,1) for every positive integer k and down steps D = (1,-1). For instance, for n=5, we have the 5 paths: U(4)D, U(2)U(1)DD, U(1)U(2)DD, U(2)DU(1)D, U(1)DU(2)D. - José Luis Ramírez Ramírez, Apr 19 2015
LINKS
David Callan, Some bijections for lattice paths, arXiv:2112.05241 [math.CO], 2021.
Emeric Deutsch, Emanuele Munarini and Simone Rinaldi, Skew Dyck paths, area, and superdiagonal bargraphs, Journal of Statistical Planning and Inference, Vol. 140, Issue 6, June 2010, pp. 1550-1562.
FORMULA
G.f.: (1 - z - sqrt(1 - 2*z - 3*z^2 + 4*z^3))/(2*z^2).
G.f. A(x) satisfies A(x) = A(x/(x-1)). - Vladeta Jovovic, Jul 07 2004
Also (x*A)^2 = (1-x)*(A-1). - Vladeta Jovovic, Jul 07 2004
G.f.: 1/(1-x^2/(1-x-x^2/(1-x^2/(1-x-x^2/(1-x^2/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Apr 08 2009
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x^2/(1-x) (continued fraction); in other words, g.f.: C(x^2/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(0) = 1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*binomial(n-k,k)*A000108(k). - Paul Barry, Jul 01 2009
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, n-2k)*A000108(k). - Paul Barry, Mar 23 2011
The sequence starting with offset 1 = iterates of M*V, leftmost column. M = an infinite tridiagonal matrix with all 1's in the sub and superdiagonals and [0,1,0,1,0,1,0,1,...] as the main diagonal; and the rest zeros. V = vector [1,0,0,0,...]. - Gary W. Adamson, Jun 08 2011
D-finite with recurrence (n+2)*a(n) + (-2*n-1)*a(n-1) + 3*(-n+1)*a(n-2) + 2*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(34+2*sqrt(17)) * ((1+sqrt(17))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
a(0) = 1, a(1) = 0; a(n) = a(n-1) + Sum_{k=0..n-2} a(k) * a(n-k-2). - Ilya Gutkovskiy, Jul 20 2021
EXAMPLE
a(5)=5 because we have UHDUD, UDUHD, UHUDD, UUDHD and UHHHD, where U=(1,1), D=(1,-1) and H=(1,0).
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2+4*x^3])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
CROSSREFS
Cf. A001006.
First differences of A090344.
Sequence in context: A026786 A027246 A185087 * A186334 A303587 A151524
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 28 2004
STATUS
approved