login
A035165
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -25.
1
1, 2, 0, 3, 1, 0, 0, 4, 1, 2, 0, 0, 2, 0, 0, 5, 2, 2, 0, 3, 0, 0, 0, 0, 1, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 4, 2, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 2, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 5, 1
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 17 2023: (Start)
a(n) = Sum_{d|n} Kronecker(-25, d).
Multiplicative with a(5^e) = 1, a(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4) (p is in A002145), and a(p^e) = e+1 if p = 2 or p > 5 and p == 1 (mod 4) (p = 2 or p is in A002144 \ {5}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/5 = 1.256637... (A019694). (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[-25, #] &]; Array[a, 100] (* Amiram Eldar, Nov 17 2023 *)
PROG
(PARI) my(m = -25); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(-25, d)); \\ Amiram Eldar, Nov 17 2023
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
STATUS
approved