login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118083 Number of partitions of n such that largest part k occurs at least floor(k/2) times. 2
1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 26, 30, 38, 45, 55, 64, 79, 91, 110, 128, 152, 176, 209, 240, 282, 325, 379, 434, 505, 576, 666, 760, 873, 993, 1139, 1290, 1473, 1668, 1897, 2141, 2430, 2736, 3095, 3481, 3925, 4404, 4958, 5550, 6232, 6968, 7805, 8710 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of partitions of n such that if the number of parts is k, then the smallest part is at least floor(k/2). Example: a(8)=11 because we have [8],[7,1],[6,2],[5,3],[4,4],[6,1,1],[5,2,1],[4,3,1],[4,2,2],[3,3,2] and [2,2,2,2].

Also number of partitions of 2*n into distinct parts with either all parts odd or all parts even. - Vladeta Jovovic, Jul 03 2007

LINKS

Table of n, a(n) for n=0..53.

FORMULA

G.f.=sum(x^(k*floor(k/2))/product(1-x^j, j=1..k), k=1..infinity).

a(n) = A000700(2*n) + A000009(n), n>0. - Vladeta Jovovic, Jul 03 2007

a(n) ~ (2 + sqrt(2)) * exp(sqrt(n/3)*Pi) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 06 2020

EXAMPLE

a(8)=11 because we have [4,4],[3,3,2],[3,3,1,1],[3,2,2,1],[3,2,1,1,1],[3,1,1,1,1,1],[2,2,2,2],[2,2,2,1,1],[2,2,1,1,1,1],[2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1].

MAPLE

g:=sum(x^(k*floor(k/2))/product(1-x^j, j=1..k), k=1..15): gser:=series(g, x=0, 65): seq(coeff(gser, x, n), n=0..60);

CROSSREFS

Cf. A118082, A118084.

Sequence in context: A031121 A080655 A199120 * A241093 A116470 A115649

Adjacent sequences:  A118080 A118081 A118082 * A118084 A118085 A118086

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Apr 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 05:14 EDT 2021. Contains 347652 sequences. (Running on oeis4.)