The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118083 Number of partitions of n such that largest part k occurs at least floor(k/2) times. 2
 1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 26, 30, 38, 45, 55, 64, 79, 91, 110, 128, 152, 176, 209, 240, 282, 325, 379, 434, 505, 576, 666, 760, 873, 993, 1139, 1290, 1473, 1668, 1897, 2141, 2430, 2736, 3095, 3481, 3925, 4404, 4958, 5550, 6232, 6968, 7805, 8710 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also number of partitions of n such that if the number of parts is k, then the smallest part is at least floor(k/2). Example: a(8)=11 because we have [8],[7,1],[6,2],[5,3],[4,4],[6,1,1],[5,2,1],[4,3,1],[4,2,2],[3,3,2] and [2,2,2,2]. Also number of partitions of 2*n into distinct parts with either all parts odd or all parts even. - Vladeta Jovovic, Jul 03 2007 LINKS Table of n, a(n) for n=0..53. FORMULA G.f.=sum(x^(k*floor(k/2))/product(1-x^j, j=1..k), k=1..infinity). a(n) = A000700(2*n) + A000009(n), n>0. - Vladeta Jovovic, Jul 03 2007 a(n) ~ (2 + sqrt(2)) * exp(sqrt(n/3)*Pi) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 06 2020 EXAMPLE a(8)=11 because we have [4,4],[3,3,2],[3,3,1,1],[3,2,2,1],[3,2,1,1,1],[3,1,1,1,1,1],[2,2,2,2],[2,2,2,1,1],[2,2,1,1,1,1],[2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1]. MAPLE g:=sum(x^(k*floor(k/2))/product(1-x^j, j=1..k), k=1..15): gser:=series(g, x=0, 65): seq(coeff(gser, x, n), n=0..60); CROSSREFS Cf. A118082, A118084. Sequence in context: A367358 A354816 A199120 * A241093 A116470 A115649 Adjacent sequences: A118080 A118081 A118082 * A118084 A118085 A118086 KEYWORD nonn AUTHOR Emeric Deutsch, Apr 12 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 07:02 EDT 2024. Contains 372729 sequences. (Running on oeis4.)