login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116471
Values 2*(n -+ 1)^2 sorted.
5
0, 2, 8, 8, 18, 18, 32, 32, 50, 50, 72, 72, 98, 98, 128, 128, 162, 162, 200, 200, 242, 242, 288, 288, 338, 338, 392, 392, 450, 450, 512, 512, 578, 578, 648, 648, 722, 722, 800, 800, 882, 882, 968, 968, 1058, 1058, 1152, 1152, 1250, 1250, 1352, 1352, 1458, 1458
OFFSET
1,2
COMMENTS
For n>2, consists of entries of A001105(n)=2*n^2 (n>1) that appear twice.
The terms a(2)-a(8) give the number of elements in the periods 1-7 of the periodic table of the chemical elements. - Antti Karttunen, Aug 14 2008
FORMULA
a(2*n) = A001105(n) for n >= 1.
From Colin Barker, Oct 06 2014: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
G.f.: -2*x^2*(x^4 - x^3 - 2*x^2 + 3*x + 1)/((x - 1)^3*(x + 1)^2). (End)
a(n) = (2*n^2 + 2*n - (2*n + 1)*(-1)^n + 1)/4, with n > 1 and a(1) = 0. - Bruno Berselli, Oct 07 2014
a(n) = A001057(n+1) + A000217(n+1) for n > 1. - Andrew S. Plewe, Sep 24 2018
E.g.f.: (x*(3 + x)*cosh(x) + (1 + x + x^2)*sinh(x) - 4*x)/2. - Stefano Spezia, Aug 13 2022
MAPLE
0, seq(op([2*n^2, 2*n^2]), n=1..30); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
Rest@ Flatten@ Table[2 (n #)^2 & /@ {-1, 1}, {n, 0, 27}] (* or *)
Rest@ CoefficientList[Series[-2 x^2 (x^4 - x^3 - 2 x^2 + 3 x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 54}], x] (* Michael De Vlieger, Jul 22 2016 *)
PROG
(PARI) concat(0, Vec(-2*x^2*(x^4-x^3-2*x^2+3*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Oct 06 2014
(GAP) a:=[2, 8, 8, 18, 18];; for n in [6..54] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; Concatenation([0], a); # Muniru A Asiru, Oct 25 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lekraj Beedassy, Mar 17 2006
EXTENSIONS
More terms from Joshua Zucker, May 11 2006
STATUS
approved