Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Aug 14 2022 02:46:57
%S 0,2,8,8,18,18,32,32,50,50,72,72,98,98,128,128,162,162,200,200,242,
%T 242,288,288,338,338,392,392,450,450,512,512,578,578,648,648,722,722,
%U 800,800,882,882,968,968,1058,1058,1152,1152,1250,1250,1352,1352,1458,1458
%N Values 2*(n -+ 1)^2 sorted.
%C For n>2, consists of entries of A001105(n)=2*n^2 (n>1) that appear twice.
%C The terms a(2)-a(8) give the number of elements in the periods 1-7 of the periodic table of the chemical elements. - _Antti Karttunen_, Aug 14 2008
%H Muniru A Asiru, <a href="/A116471/b116471.txt">Table of n, a(n) for n = 1..5000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Atomic_electron_configuration_table">Atomic electron configuration table</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Periodic_table">Periodic table</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F a(2*n) = A001105(n) for n >= 1.
%F From _Colin Barker_, Oct 06 2014: (Start)
%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
%F G.f.: -2*x^2*(x^4 - x^3 - 2*x^2 + 3*x + 1)/((x - 1)^3*(x + 1)^2). (End)
%F a(n) = (2*n^2 + 2*n - (2*n + 1)*(-1)^n + 1)/4, with n > 1 and a(1) = 0. - _Bruno Berselli_, Oct 07 2014
%F a(n) = A001057(n+1) + A000217(n+1) for n > 1. - _Andrew S. Plewe_, Sep 24 2018
%F E.g.f.: (x*(3 + x)*cosh(x) + (1 + x + x^2)*sinh(x) - 4*x)/2. - _Stefano Spezia_, Aug 13 2022
%p 0,seq(op([2*n^2,2*n^2]),n=1..30); # _Muniru A Asiru_, Oct 25 2018
%t Rest@ Flatten@ Table[2 (n #)^2 & /@ {-1, 1}, {n, 0, 27}] (* or *)
%t Rest@ CoefficientList[Series[-2 x^2 (x^4 - x^3 - 2 x^2 + 3 x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 54}], x] (* _Michael De Vlieger_, Jul 22 2016 *)
%o (PARI) concat(0, Vec(-2*x^2*(x^4-x^3-2*x^2+3*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ _Colin Barker_, Oct 06 2014
%o (GAP) a:=[2,8,8,18,18];; for n in [6..54] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; Concatenation([0],a); # _Muniru A Asiru_, Oct 25 2018
%Y Cf. A001105, A093907, A016742.
%K nonn,easy
%O 1,2
%A _Lekraj Beedassy_, Mar 17 2006
%E More terms from _Joshua Zucker_, May 11 2006