login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A146749
Coefficients of the Pascal sequence minus the Eulerian numbers: q(x,n)= = (1 - x)^(n + 1)*PolyLog[ -n, x]; p(x,n) = (q(x, n)/x - (x + 1)^(n - 1))/x.
0
2, 8, 8, 22, 60, 22, 52, 292, 292, 52, 114, 1176, 2396, 1176, 114, 240, 4272, 15584, 15584, 4272, 240, 494, 14580, 88178, 156120, 88178, 14580, 494, 1004, 47804, 455108, 1310228, 1310228, 455108, 47804, 1004
OFFSET
3,1
COMMENTS
Row sums are: {2, 16, 104, 688, 4976, 40192, 362624, 3628288}.
First row elements/column are A005803;f(n)=2^n - 2n; {2, 8, 22, 52, 114, 240, 494, 1004}.
FORMULA
q(x,n) = (1 - x)^(n + 1)*PolyLog[ -n, x]; p(x,n) = (q(x, n)/x - (x + 1)^(n - 1))/x; t(n,m)=Coefficients(p(x,n)).
EXAMPLE
Triangle begins:
{2},
{8, 8},
{22, 60, 22},
{52, 292, 292, 52},
{114, 1176, 2396, 1176, 114},
{240, 4272, 15584, 15584, 4272, 240},
{494, 14580, 88178, 156120, 88178, 14580, 494},
{1004, 47804, 455108, 1310228, 1310228, 455108, 47804, 1004}
...
MATHEMATICA
q[x_, n_] = (1 - x)^(n + 1)*PolyLog[ -n, x]; p[x_, n_] = (q[x, n]/x - (x + 1)^(n - 1))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 10}]; Flatten[%]
CROSSREFS
Cf. A005803.
Sequence in context: A116471 A364294 A375853 * A250313 A180825 A230708
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Nov 01 2008
STATUS
approved