login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309879
Number of odd parts appearing among the fourth largest parts of the partitions of n into 5 parts.
3
0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 11, 14, 18, 22, 28, 33, 40, 47, 56, 65, 77, 89, 104, 119, 137, 155, 177, 199, 225, 252, 283, 315, 352, 389, 432, 476, 525, 576, 633, 691, 756, 823, 897, 973, 1057, 1143, 1237, 1334, 1439, 1547, 1665, 1786, 1917, 2052
OFFSET
0,8
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (k mod 2).
Conjectures from Colin Barker, Aug 22 2019: (Start)
G.f.: x^5*(1 - x + x^2)*(1 - x^3 + x^6) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) + a(n-8) - 2*a(n-9) + 2*a(n-10) - 3*a(n-11) + 3*a(n-12) - 2*a(n-13) + 2*a(n-14) - a(n-15) - a(n-18) + 2*a(n-19) - a(n-20) + a(n-21) - 2*a(n-22) + a(n-23) for n>22.
(End) [Conjectures verified by Wesley Ivan Hurt, Aug 24 2019]
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 5 7 8 11 14 ...
--------------------------------------------------------------------------
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1, 0, 0, 1, -2, 2, -3, 3, -2, 2, -1,
0, 0, -1, 2, -1, 1, -2, 1}, {0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8,
11, 14, 18, 22, 28, 33, 40, 47, 56, 65}, 50]
PROG
(PARI) Vec(x^5*(1-x+x^2)*(1-x^3+x^6)/((1-x)^5*(1+x)^2*(1+x^2)*(1+x+x^2)*(1-x+x^2-x^3+x^4)*(1+x^4)*(1+x+x^2+x^3+x^4)) + O(x^70)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2019
STATUS
approved