login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309882
Sum of the even parts appearing among the fourth largest parts of the partitions of n into 5 parts.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 40, 52, 68, 88, 110, 136, 166, 198, 240, 286, 340, 404, 478, 560, 652, 754, 872, 1000, 1146, 1308, 1488, 1686, 1908, 2148, 2416, 2708, 3028, 3376, 3758, 4168, 4616, 5098, 5630, 6200, 6816, 7482, 8198
OFFSET
0,10
LINKS
Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12, 12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2, 4, -4, 4, -4, 4, -4, 3, -1).
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} k * ((k-1) mod 2).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 2*a(n-8) - 2*a(n-9) + 6*a(n-10) - 10*a(n-11) + 12*a(n-12) - 12*a(n-13) + 12*a(n-14) - 12*a(n-15) + 11*a(n-16) - 9*a(n-17) + 4*a(n-18) + 4*a(n-19) - 9*a(n-20) + 11*a(n-21) - 12*a(n-22) + 12*a(n-23) - 12*a(n-24) + 12*a(n-25) - 10*a(n-26) + 6*a(n-27) - 2*a(n-28) - 2*a(n-29) + 4*a(n-30) - 4*a(n-31) + 4*a(n-32) - 4*a(n-33) + 4*a(n-34) - 4*a(n-35) + 3*a(n-36) - a(n-37) for n > 36.
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 4 6 10 14 18 ...
--------------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Sum[Sum[k * Mod[k - 1, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
LinearRecurrence[{3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12,
12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2,
4, -4, 4, -4, 4, -4, 3, -1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6,
10, 14, 18, 24, 30, 40, 52, 68, 88, 110, 136, 166, 198, 240, 286,
340, 404, 478, 560, 652, 754, 872, 1000, 1146, 1308}, 50]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2019
STATUS
approved