The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128422 Projective plane crossing number of K_{4,n}. 11
 0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 36, 44, 52, 60, 70, 80, 90, 102, 114, 126, 140, 154, 168, 184, 200, 216, 234, 252, 270, 290, 310, 330, 352, 374, 396, 420, 444, 468, 494, 520, 546, 574, 602, 630, 660, 690, 720, 752, 784, 816, 850, 884, 918, 954, 990, 1026 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS From Gus Wiseman, Oct 15 2020: (Start) Also the number of 3-part compositions of n that are neither strictly increasing nor weakly decreasing. The set of numbers k such that row k of A066099 is such a composition is the complement of A333255 (strictly increasing) and A114994 (weakly decreasing) in A014311 (triples). The a(4) = 2 through a(9) = 14 compositions are:   (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)  (1,1,7)   (1,2,1)  (1,2,2)  (1,3,2)  (1,3,3)  (1,4,3)  (1,4,4)            (1,3,1)  (1,4,1)  (1,4,2)  (1,5,2)  (1,5,3)            (2,1,2)  (2,1,3)  (1,5,1)  (1,6,1)  (1,6,2)                     (2,3,1)  (2,1,4)  (2,1,5)  (1,7,1)                     (3,1,2)  (2,2,3)  (2,2,4)  (2,1,6)                              (2,3,2)  (2,3,3)  (2,2,5)                              (2,4,1)  (2,4,2)  (2,4,3)                              (3,1,3)  (2,5,1)  (2,5,2)                              (4,1,2)  (3,1,4)  (2,6,1)                                       (3,2,3)  (3,1,5)                                       (3,4,1)  (3,2,4)                                       (4,1,3)  (3,4,2)                                       (5,1,2)  (3,5,1)                                                (4,1,4)                                                (4,2,3)                                                (5,1,3)                                                (6,1,2) A007997 counts the complement. A337482 counts these compositions of any length. A337484 is the non-strict/non-strict version. A000009 counts strictly increasing compositions, ranked by A333255. A000041 counts weakly decreasing compositions, ranked by A114994. A001523 counts unimodal compositions (strict: A072706). A007318 and A097805 count compositions by length. A032020 counts strict compositions, ranked by A233564. A225620 ranks weakly increasing compositions. A333149 counts neither increasing nor decreasing strict compositions. A333256 ranks strictly decreasing compositions. A337483 counts 3-part weakly increasing or weakly decreasing compositions. Cf. A001399, A059204, A072705, A115981, A329398, A332578, A332831, A332833, A332834, A332874, A333147, A333190. (End) LINKS Eric Weisstein's World of Mathematics, Complete Bipartite Graph Eric Weisstein's World of Mathematics, Projective Plane Crossing Number Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1). FORMULA a(n) = floor(n/3)*(2n-3(floor(n/3)+1)). a(n) = ceiling(n^2/3) - n. - Charles R Greathouse IV, Jun 06 2013 G.f.: -2*x^4 / ((x-1)^3*(x^2+x+1)). - Colin Barker, Jun 06 2013 a(n) = floor((n - 1)(n - 2) / 3). - Christopher Hunt Gribble, Oct 13 2009 a(n) = 2*A001840(n-3). - R. J. Mathar, Jul 21 2015 a(n) = A000217(n-2) - A001399(n-6) - A001399(n-3). - Gus Wiseman, Oct 15 2020 MATHEMATICA Table[Floor[((n - 2)^2 + (n - 2))/3], {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *) Table[Ceiling[n^2/3] - n, {n, 20}] (* Eric W. Weisstein, Sep 07 2018 *) Table[(3 n^2 - 9 n + 4 - 4 Cos[2 n Pi/3])/9, {n, 20}] (* Eric W. Weisstein, Sep 07 2018 *) LinearRecurrence[{2, -1, 1, -2, 1}, {0, 0, 0, 2, 4, 6}, 20] (* Eric W. Weisstein, Sep 07 2018 *) CoefficientList[Series[-2 x^3/((-1 + x)^3 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 07 2018 *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {3}], !Less@@#&&!GreaterEqual@@#&]], {n, 15}] (* Gus Wiseman, Oct 15 2020 *) PROG (PARI) a(n)=(n-1)*(n-2)\3 \\ Charles R Greathouse IV, Jun 06 2013 CROSSREFS Cf. A001840. Sequence in context: A303744 A059254 A024518 * A309882 A098380 A007782 Adjacent sequences:  A128419 A128420 A128421 * A128423 A128424 A128425 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Mar 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 11:48 EST 2021. Contains 349563 sequences. (Running on oeis4.)