login
LCM of Lucas numbers {L(1), L(2), ..., L(n)}.
1

%I #26 Sep 26 2024 17:36:54

%S 1,3,12,84,924,2772,80388,3778236,71786484,2943245844,585705922956,

%T 13471236227988,7018514074781748,1972202455013671188,

%U 61138276105423806828,134932175364670341669396,481842798227237790101413116,154671538230943330622553610236

%N LCM of Lucas numbers {L(1), L(2), ..., L(n)}.

%t Table[LCM @@ LucasL[Range[n]], {n, 1, 16}]

%t Module[{nn=20,ln},ln=LucasL[Range[nn]];Table[LCM@@Take[ln,n],{n,nn}]] (* _Harvey P. Dale_, Sep 26 2024 *)

%o (PARI) Lucas(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032

%o a(n) = lcm(apply(Lucas, [1..n])); \\ _Michel Marcus_, Jul 17 2022

%o (Python)

%o from math import lcm

%o from sympy import lucas

%o def A355322(n): return lcm(*(lucas(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jul 17 2022

%Y Cf. A000032, A035105 (LCM of Fibonacci numbers), essentially the same as A062954.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jul 16 2022