The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189921 Wythoff representation of natural numbers. 9
 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The row lengths sequence of this array is A135817. For the Wythoff representation of n see the W. Lang reference. The Wythoff complementary sequences are A(n):=A000201(n) and B(n)=A001950(n), n>=1. The Wythoff representation of n=1 is A(1) and for n>=2 there is a unique representation as composition of A- or B-sequence applied to B(1)=2. E.g. n=4 is A(A(B(1))), written as AAB or as `110` or here as 1,1,0, i.e., 1 for A and 0 for B. The Wythoff orbit of 1 (starting always with B(1), applying any number of A- or B-sequences) produces every number n>1 just once. This produces a binary Wythoff code for n>1, ending always in 0 (for B(1)). REFERENCES Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.] LINKS Amiram Eldar, Table of n, a(n) for n = 1..9415 (first 1000 rows) Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly 33 (February, 1995) 3-8. Wolfdieter Lang, Wythoff representations for n=1...150. FORMULA The entries of row n, n>=1, are given by W(n), computed with the algorithm given on p. 335 of the W. Lang reference. 1 is used for Wythoff's A sequence and 0 for the B sequence. EXAMPLE n=1: 1; n=2: 0; n=3: 1, 0; n=4: 1, 1, 0; n=5: 0, 0; n=6: 1, 1, 1, 0; n=7: 0, 1, 0; n=8: 1, 0, 0; ... 1 = A(1); 2 = B(1), 3 = A(B(1)), 4 = A(A(B(1))), 5 = B(B(1)), 6 = A(A(A(B(1)))), 7 = B(A(B(1))), 8 = A(B(B(1))), ... MATHEMATICA z[n_] := Floor[(n + 1)*GoldenRatio] - n - 1; h[n_] := z[n] - z[n - 1]; w[n_] := Module[{m = n, zm = 0, hm, s = {}}, While[zm != 1, hm = h[m]; AppendTo[s, hm]; If[hm == 1, zm = z[m], zm = z[z[m]]]; m = zm]; s]; w[0] = 0; Table[w[n], {n, 1, 25}] // Flatten (* Amiram Eldar, Jul 01 2023 *) CROSSREFS See A317208 for another encoding; also for the link to the scanned W. Lang article with corrections. Cf. A135817 (length), A189920 (Zeckendorf). Sequence in context: A106344 A106346 A296212 * A341346 A167371 A127241 Adjacent sequences: A189918 A189919 A189920 * A189922 A189923 A189924 KEYWORD nonn,easy,tabf,base AUTHOR Wolfdieter Lang, Jun 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 03:59 EDT 2024. Contains 372807 sequences. (Running on oeis4.)