login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189919
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - (2*k-1)*x).
2
1, 1, 3, 15, 105, 933, 10023, 126195, 1821165, 29625513, 536223723, 10687190775, 232544252625, 5484912970893, 139387510991823, 3796699051667355, 110344769466766485, 3408297041928101073, 111490951250101642323, 3850360096498676899935
OFFSET
0,3
LINKS
FORMULA
a(n) ~ 2^(n+1) * n! / (3^(3/2) * (log(3))^(n+1)). - Vaclav Kotesovec, Nov 01 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 933*x^5 + 10023*x^6 +...
where
A(x) = 1 + x/(1-x) + 2!*x^2/((1-x)*(1-3*x)) + 3!*x^3/((1-x)*(1-3*x)*(1-5*x)) + 4!*x^4/((1-x)*(1-3*x)*(1-5*x)*(1-7*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!*x^m/prod(k=1, m, 1-(2*k-1)*x+x*O(x^n))), n)}
CROSSREFS
Sequence in context: A357596 A249014 A258498 * A360579 A251598 A338725
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 22 2011
STATUS
approved