The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249014 A double binomial sum. 0
1, 3, 15, 105, 933, 9951, 123123, 1727685, 27050985, 466795323, 8791179831, 179262508833, 3931730998605, 92237649141015, 2303515063987803, 60987344488950141, 1705641174191204433, 50228924171214633075, 1553143164997199612895 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1/(1-t)^2)*exp((3*t-3*t^2+t^3)/(3*(1-t)^3)).
a(n) = sum(n!/k!*sum(bin(k,i)*bin(n+k-i+1,2*k+i+1)/3^i,i=0..k),k=0..n).
a(n) = sum(Lah(n,k)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = (1+t)^2*exp(t+t^2+t^3/3) (essentially sequence A049425).
a(n) = sum(Lah(n+1,k+1)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = exp(t+t^2+t^3/3) (sequence A049425).
a(n) = sum(bin(n,k)*(n!/k!)*h(k),k=0..n), where the numbers h(n) are defined by the e.g.f. h(x) = (1+t)*exp(t+t^2+t^3/3).
Recurrence: a(n+4)-(4*n+15)*a(n+3)+6*(n+3)^2*a(n+2)-2*(n+3)*(n+2)*(2n+5)*a(n+1)+(n+3)*(n+2)^2*(n+1)*a(n)=0.
MATHEMATICA
Table[Sum[n!/k!Sum[Binomial[k, i]Binomial[n+k-i+1, 2k+i+1]/3^i, {i, 0, k}], {k, 0, n}], {n, 0, 60}]
PROG
(Maxima) makelist(sum(n!/k!*sum(binomial(k, i)*binomial(n+k-i+1, 2*k+i+1)/3^i, i, 0, k), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A049425.
Sequence in context: A291744 A246860 A357596 * A258498 A189919 A360579
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 20 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 10:46 EDT 2024. Contains 372938 sequences. (Running on oeis4.)