login
A249014
A double binomial sum.
0
1, 3, 15, 105, 933, 9951, 123123, 1727685, 27050985, 466795323, 8791179831, 179262508833, 3931730998605, 92237649141015, 2303515063987803, 60987344488950141, 1705641174191204433, 50228924171214633075, 1553143164997199612895
OFFSET
0,2
FORMULA
E.g.f.: (1/(1-t)^2)*exp((3*t-3*t^2+t^3)/(3*(1-t)^3)).
a(n) = sum(n!/k!*sum(bin(k,i)*bin(n+k-i+1,2*k+i+1)/3^i,i=0..k),k=0..n).
a(n) = sum(Lah(n,k)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = (1+t)^2*exp(t+t^2+t^3/3) (essentially sequence A049425).
a(n) = sum(Lah(n+1,k+1)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = exp(t+t^2+t^3/3) (sequence A049425).
a(n) = sum(bin(n,k)*(n!/k!)*h(k),k=0..n), where the numbers h(n) are defined by the e.g.f. h(x) = (1+t)*exp(t+t^2+t^3/3).
Recurrence: a(n+4)-(4*n+15)*a(n+3)+6*(n+3)^2*a(n+2)-2*(n+3)*(n+2)*(2n+5)*a(n+1)+(n+3)*(n+2)^2*(n+1)*a(n)=0.
MATHEMATICA
Table[Sum[n!/k!Sum[Binomial[k, i]Binomial[n+k-i+1, 2k+i+1]/3^i, {i, 0, k}], {k, 0, n}], {n, 0, 60}]
PROG
(Maxima) makelist(sum(n!/k!*sum(binomial(k, i)*binomial(n+k-i+1, 2*k+i+1)/3^i, i, 0, k), k, 0, n), n, 0, 12);
CROSSREFS
Cf. A049425.
Sequence in context: A291744 A246860 A357596 * A258498 A189919 A360579
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 20 2014
STATUS
approved