The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249014 A double binomial sum. 0
 1, 3, 15, 105, 933, 9951, 123123, 1727685, 27050985, 466795323, 8791179831, 179262508833, 3931730998605, 92237649141015, 2303515063987803, 60987344488950141, 1705641174191204433, 50228924171214633075, 1553143164997199612895 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..18. FORMULA E.g.f.: (1/(1-t)^2)*exp((3*t-3*t^2+t^3)/(3*(1-t)^3)). a(n) = sum(n!/k!*sum(bin(k,i)*bin(n+k-i+1,2*k+i+1)/3^i,i=0..k),k=0..n). a(n) = sum(Lah(n,k)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = (1+t)^2*exp(t+t^2+t^3/3) (essentially sequence A049425). a(n) = sum(Lah(n+1,k+1)*h(k),k=0..n), where Lah(n,k) are the Lah numbers and the numbers h(n) are defined by the e.g.f. h(x) = exp(t+t^2+t^3/3) (sequence A049425). a(n) = sum(bin(n,k)*(n!/k!)*h(k),k=0..n), where the numbers h(n) are defined by the e.g.f. h(x) = (1+t)*exp(t+t^2+t^3/3). Recurrence: a(n+4)-(4*n+15)*a(n+3)+6*(n+3)^2*a(n+2)-2*(n+3)*(n+2)*(2n+5)*a(n+1)+(n+3)*(n+2)^2*(n+1)*a(n)=0. MATHEMATICA Table[Sum[n!/k!Sum[Binomial[k, i]Binomial[n+k-i+1, 2k+i+1]/3^i, {i, 0, k}], {k, 0, n}], {n, 0, 60}] PROG (Maxima) makelist(sum(n!/k!*sum(binomial(k, i)*binomial(n+k-i+1, 2*k+i+1)/3^i, i, 0, k), k, 0, n), n, 0, 12); CROSSREFS Cf. A049425. Sequence in context: A291744 A246860 A357596 * A258498 A189919 A360579 Adjacent sequences: A249011 A249012 A249013 * A249015 A249016 A249017 KEYWORD nonn AUTHOR Emanuele Munarini, Oct 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 10:46 EDT 2024. Contains 372938 sequences. (Running on oeis4.)