OFFSET
1,2
COMMENTS
a(n) is the number of triangulations with middle chord of an 2n+2-gon modulo the cyclic action. So a(n) = A000108(n)^2 - A000107(A000108(n)-1). The first part A000108(n)^2 means the cartes of two n+2-gons separated by the middle chord, second part is the duplicated joins need to be removed. - Yuchun Ji, Aug 11 2020
LINKS
FORMULA
In the MathOverflow link, Nathaniel Johnston conjectures a(n) = A000108(n)*(A000108(n)+1)/2. - Robert Israel, Jan 17 2020
MAPLE
MATHEMATICA
a[n_] := a[n] = (1/8)*Integrate[Integrate[(Cos[x] - Cos[y])^2 * (2 Cos[x] + 2 Cos[y])^(2 n), {y, 0, 2 Pi}], {x, 0, 2 Pi}]/ Pi^2 + (1/2)*Integrate[(1 - Cos[z]^2)*(2 Cos[z])^(2 n), {z, 0, 2 Pi}]/Pi;
Table[Print[n, " ", a[n]]; a[n], {n, 1, 21}] (* Jean-François Alcover, Feb 05 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Nathaniel Johnston, Sep 05 2014
STATUS
approved