OFFSET
0,3
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 61, 62 (2.1.8-2.1.10).
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
Bernhard Gittenberger, Emma Yu Jin, Michael Wallner, On the shape of random Pólya structures, arXiv|1707.02144 [math.CO], 2017-2018; Discrete Math., 341 (2018), 896-911.
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
R. Harary, R. W. Robinson, Isomorphic factorizations VIII: bisectable trees, Combinatorica 4 (2) (1984) 169-179, eq. (4.12).
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 123
R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 [math.CO] (2016), Table 6.
N. J. A. Sloane, Transforms
FORMULA
G.f.: A000081(x)/(1-A000081(x)), where A000081(x) is the g.f. of A000081 [Harary-Robinson]. - R. J. Mathar, Sep 16 2015
MAPLE
with(numtheory): b:= proc(n) option remember; `if`(n<2, n, add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1) /(n-1)) end: a:= proc(n) option remember; b(n) +add(a(n-i) *b(i), i=1..n-1) end: seq(a(n), n=0..26); # Alois P. Heinz, Jun 02 2009
MATHEMATICA
b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1); a[n_] := a[n] = b[n] + Sum[ a[n-i]*b[i], {i, 1, n-1}]; Table[ a[n], {n, 0, 26}](* Jean-François Alcover, Mar 07 2012, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Better description from Christian G. Bower, Apr 15 1998
STATUS
approved