login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063028
Reversion of x - x^2 + x^5.
3
0, 1, 1, 2, 5, 13, 35, 96, 264, 720, 1925, 4966, 12038, 25907, 41310, -5168, -468996, -2982240, -14350320, -61334790, -244951840, -934684465, -3447083370, -12365767620, -43304717625, -148314737961, -497033803314, -1628721662260, -5208556347700
OFFSET
0,4
COMMENTS
For the reversion of x - a*x^2 - b*x^5 (a!=0, b!=0) we have a(n) = Sum_{j=0..floor((n-1)/3)} a^(n-4*j-1)*b^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1)/n, n > 0. - Vladimir Kruchinin, May 28 2011
FORMULA
a(n) = Sum_{j=0..floor((n-1)/3)} (-1)^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1)/n, n > 0, a(0)=0. - Vladimir Kruchinin, May 28 2011
D-finite with recurrence +7576007*n*(n-1)*(n-2)*(n-3)*a(n) -14*(n-1)*(n-2)*(n-3)*(2435499*n+162464)*a(n-1) -70*(n-2)*(n-3)*(443090*n^2-7345575*n+16893064)*a(n-2) +1500*(n-3)*(126085*n^3-1478320*n^2+5789009*n-7573118)*a(n-3) +5*(8864375*n^4-23685000*n^3-505107125*n^2+2934387750*n-4417359408)*a(n-4) +250*(5*n-26)*(166625*n^3-1966175*n^2+7613615*n-9631377)*a(n-5) -131250*(5*n-27)*(5*n-31)*(5*n-24)*(5*n-28)*a(n-6)=0. - R. J. Mathar, Mar 21 2022
MATHEMATICA
CoefficientList[InverseSeries[Series[y - y^2 + y^5, {y, 0, 30}], x], x]
PROG
(Maxima)
a(n):=sum((-1)^j*binomial(n-3*j-1, j)*binomial(2*n-3*j-2, n-1), j, 0, (n-1)/3)/n; /* Vladimir Kruchinin, May 28 2011 */
(PARI) x='x+O('x^66); /* that many terms */
Vec(serreverse(x-x^2+x^5)) /* show terms */ /* Joerg Arndt, May 28 2011 */
CROSSREFS
Sequence in context: A000107 A366088 A370841 * A085810 A355040 A235611
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Jul 05 2001
STATUS
approved