The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A360579 Expansion of A(x) satisfying A(x) = Series_Reversion( x - x^3 * A'(x)/A(x) ). 2
1, 1, 3, 15, 105, 941, 10227, 130103, 1890785, 30848357, 557693603, 11059808615, 238659220361, 5566711614125, 139564620135715, 3742989867108071, 106932082058345601, 3242189373760912485, 103987607657060861139, 3517689685292365948343, 125173307497940331598857 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n may be defined by the following.
(1) A( x - x^3 * A'(x)/A(x) ) = x.
(2) A(x) = x + A(x)^3 * A'(A(x)) / A(A(x)).
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^(3*n) * (A'(x)/A(x))^n / n!.
(4) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(3*n-1) * (A'(x)/A(x))^n / n! ).
(5) B(x) = 1 + x*Sum_{n>=1} d^n/dx^n x^(2*n-1) * B(x)^n / n!, where B(x) = x*A'(x)/A(x) is the g.f. of A356848.
a(n) ~ c * n! / (n^(2*(1 - LambertW(1))) * LambertW(1)^n), where c = 0.23898347792869028031... - Vaclav Kotesovec, Feb 23 2023
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 15*x^4 + 105*x^5 + 941*x^6 + 10227*x^7 + 130103*x^8 + 1890785*x^9 + 30848357*x^10 + ...
Related series.
Let B(x) = x*A'(x)/A(x), then B(x) is the g.f. of A356848,
B(x) = 1 + x + 5*x^2 + 37*x^3 + 353*x^4 + 4061*x^5 + 54221*x^6 + 820205*x^7 + 13829377*x^8 + 256853629*x^9 + ... + A356848(n)*x^n + ...
such that A( x - x^2*B(x) ) = x,
and B(x) is defined by
B(x) = 1 + x*[(d/dx x*B(x)) + (d^2/dx^2 x^3*B(x)^2)/2! + (d^3/dx^3 x^5*B(x)^3)/3! + (d^4/dx^4 x^7*B(x)^4)/4! + (d^5/dx^5 x^9*B(x)^5)/5! + (d^6/dx^6 x^11*B(x)^6)/6! + ... + (d^n/dx^n x^(2*n-1)*B(x)^n)/n! + ...].
Further,
Series_Reversion(A(x)) = x - x^2 - x^3 - 5*x^4 - 37*x^5 - 353*x^6 - 4061*x^7 - 54221*x^8 - 820205*x^9 + ... + -A356848(n)*x^(n+2) + ...
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 64*x^6 + 441*x^7 + 3795*x^8 + 39504*x^9 + 483852*x^10 + ...
A'(A(x)) = 1 + 2*x + 11*x^2 + 84*x^3 + 798*x^4 + 9000*x^5 + 117232*x^6 + 1730560*x^7 + 28543340*x^8 + ...
A(A(x)) = x + 2*x^2 + 8*x^3 + 46*x^4 + 342*x^5 + 3118*x^6 + 33730*x^7 + 423014*x^8 + 6042106*x^9 + ...
A'(A(x))/A(A(x)) = 1/x + 3*x + 32*x^2 + 368*x^3 + 4752*x^4 + 68556*x^5 + 1095192*x^6 + 19216988*x^7 + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A=serreverse(x - x^3*A'/A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x); for(i=1, n, A = x + sum(m=1, n, Dx(m-1, x^(3*m)*(A')^m/A^m/m!)) +O(x^(n+1))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); for(i=1, n, A = x*exp(sum(m=1, n, Dx(m-1, x^(3*m-1)*(A')^m/A^m/m!)) +O(x^(n+1)))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A249014 A258498 A189919 * A251598 A338725 A295871
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)