The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A360579 Expansion of A(x) satisfying A(x) = Series_Reversion( x - x^3 * A'(x)/A(x) ). 2
 1, 1, 3, 15, 105, 941, 10227, 130103, 1890785, 30848357, 557693603, 11059808615, 238659220361, 5566711614125, 139564620135715, 3742989867108071, 106932082058345601, 3242189373760912485, 103987607657060861139, 3517689685292365948343, 125173307497940331598857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA G.f. A(x) = Sum_{n>=1} a(n)*x^n may be defined by the following. (1) A( x - x^3 * A'(x)/A(x) ) = x. (2) A(x) = x + A(x)^3 * A'(A(x)) / A(A(x)). (3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^(3*n) * (A'(x)/A(x))^n / n!. (4) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(3*n-1) * (A'(x)/A(x))^n / n! ). (5) B(x) = 1 + x*Sum_{n>=1} d^n/dx^n x^(2*n-1) * B(x)^n / n!, where B(x) = x*A'(x)/A(x) is the g.f. of A356848. a(n) ~ c * n! / (n^(2*(1 - LambertW(1))) * LambertW(1)^n), where c = 0.23898347792869028031... - Vaclav Kotesovec, Feb 23 2023 EXAMPLE G.f.: A(x) = x + x^2 + 3*x^3 + 15*x^4 + 105*x^5 + 941*x^6 + 10227*x^7 + 130103*x^8 + 1890785*x^9 + 30848357*x^10 + ... Related series. Let B(x) = x*A'(x)/A(x), then B(x) is the g.f. of A356848, B(x) = 1 + x + 5*x^2 + 37*x^3 + 353*x^4 + 4061*x^5 + 54221*x^6 + 820205*x^7 + 13829377*x^8 + 256853629*x^9 + ... + A356848(n)*x^n + ... such that A( x - x^2*B(x) ) = x, and B(x) is defined by B(x) = 1 + x*[(d/dx x*B(x)) + (d^2/dx^2 x^3*B(x)^2)/2! + (d^3/dx^3 x^5*B(x)^3)/3! + (d^4/dx^4 x^7*B(x)^4)/4! + (d^5/dx^5 x^9*B(x)^5)/5! + (d^6/dx^6 x^11*B(x)^6)/6! + ... + (d^n/dx^n x^(2*n-1)*B(x)^n)/n! + ...]. Further, Series_Reversion(A(x)) = x - x^2 - x^3 - 5*x^4 - 37*x^5 - 353*x^6 - 4061*x^7 - 54221*x^8 - 820205*x^9 + ... + -A356848(n)*x^(n+2) + ... A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 64*x^6 + 441*x^7 + 3795*x^8 + 39504*x^9 + 483852*x^10 + ... A'(A(x)) = 1 + 2*x + 11*x^2 + 84*x^3 + 798*x^4 + 9000*x^5 + 117232*x^6 + 1730560*x^7 + 28543340*x^8 + ... A(A(x)) = x + 2*x^2 + 8*x^3 + 46*x^4 + 342*x^5 + 3118*x^6 + 33730*x^7 + 423014*x^8 + 6042106*x^9 + ... A'(A(x))/A(A(x)) = 1/x + 3*x + 32*x^2 + 368*x^3 + 4752*x^4 + 68556*x^5 + 1095192*x^6 + 19216988*x^7 + ... PROG (PARI) {a(n) = my(A=x); for(i=1, n, A=serreverse(x - x^3*A'/A +x*O(x^n))); polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D} {a(n) = my(A=x); for(i=1, n, A = x + sum(m=1, n, Dx(m-1, x^(3*m)*(A')^m/A^m/m!)) +O(x^(n+1))); polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x); for(i=1, n, A = x*exp(sum(m=1, n, Dx(m-1, x^(3*m-1)*(A')^m/A^m/m!)) +O(x^(n+1)))); polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A356848, A360578. Sequence in context: A249014 A258498 A189919 * A251598 A338725 A295871 Adjacent sequences: A360576 A360577 A360578 * A360580 A360581 A360582 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 22 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)