login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360578
Expansion of g.f. A(x) satisfying A(x) = Series_Reversion( x - x*A'(x)*A(x) ).
4
1, 1, 5, 42, 471, 6422, 101439, 1803949, 35459549, 760744865, 17651187689, 439893743313, 11711735210140, 331666197753372, 9954249177284539, 315638779480717743, 10545365878475964736, 370309787453143694246, 13637805276205022293179, 525684316153586923528166
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A( x - x*A'(x)*A(x) ) = x.
(2) A(x) = x + A(x) * A'(A(x)) * A(A(x)).
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n * A'(x)^n * A(x)^n / n!.
(4) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1) * A'(x)^n * A(x)^n / n! ).
a(n) ~ c * n! * n^alfa / LambertW(1)^n, where alfa = 1.5447806483693... and c = 0.02888888614196289496..., conjecture: alfa = 2*(2*LambertW(1) - 1 + 1/(1 + LambertW(1))). - Vaclav Kotesovec, Feb 22 2023
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 42*x^4 + 471*x^5 + 6422*x^6 + 101439*x^7 + 1803949*x^8 + 35459549*x^9 + 760744865*x^10 + ...
such that A( x - x*A'(x)*A(x) ) = x.
Related series.
Series_Reversion(A(x)) = x - x^2 - 3*x^3 - 22*x^4 - 235*x^5 - 3153*x^6 - 49721*x^7 - 888784*x^8 - 17615520*x^9 + ...
A'(x)*A(x) = x + 3*x^2 + 22*x^3 + 235*x^4 + 3153*x^5 + 49721*x^6 + 888784*x^7 + 17615520*x^8 + ...
A(A(x)) = x + 2*x^2 + 12*x^3 + 110*x^4 + 1294*x^5 + 18127*x^6 + 290620*x^7 + 5206800*x^8 + 102633591*x^9 + ...
A'(A(x)) = 1 + 2*x + 17*x^2 + 208*x^3 + 3108*x^4 + 53328*x^5 + 1018948*x^6 + 21297818*x^7 + 481458997*x^8 + ...
A'(A(x))*A(A(x)) = x + 4*x^2 + 33*x^3 + 376*x^4 + 5242*x^5 + 84625*x^6 + 1534652*x^7 + 30682881*x^8 + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A=serreverse(x - x*A'*A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x); for(i=1, n, A = x + sum(m=1, n, Dx(m-1, x^m*(A')^m*A^m/m!)) +O(x^(n+1))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); for(i=1, n, A = x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*(A')^m*A^m/m!)) +O(x^(n+1)))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 21 2023
STATUS
approved