OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..400
FORMULA
O.g.f. A(x) satisfies:
(1) A(x) = 1 + x*A(x) * ( d/dx x*A(x)^2 ).
(2) [x^n] exp( n * x*A(x)^2 ) / A(x) = 0 for n>0.
(3.a) [x^n] exp(-n * x*A(x)^2) * (2 - 1/A(x)) = 0 for n >= 1.
(3.b) [x^n] exp(-n^2 * x*A(x)^2) * (n + 1 - n/A(x)) = 0 for n >= 1.
(3.c) [x^n] exp(-n^(p+1) * x*A(x)^2) * (n^p + 1 - n^p/A(x)) = 0 for n>=1 and for fixed integer p >= 0.
a(n) ~ c * 2^n * n! * n^(3/2), where c = 0.188286926603706833845600622... - Vaclav Kotesovec, Aug 05 2018
EXAMPLE
O.g.f.: A(x) = 1 + x + 5*x^2 + 42*x^3 + 471*x^4 + 6435*x^5 + 102232*x^6 + 1837630*x^7 + 36719439*x^8 + 805716679*x^9 + ...
where A(x) = 1 + x*A(x)^3 + 2*x^2*A(x)^2*A'(x).
RELATED TABLE.
The table of coefficients of x^k/k! in exp( n*x*A(x)^2 ) / A(x) begins:
n=1: [1, 0, -5, -158, -7779, -563924, -56177105, -7318104450, ...];
n=2: [1, 1, 0, -94, -5968, -473688, -49352768, -6601523360, ...];
n=3: [1, 2, 7, 0, -3435, -354282, -40709709, -5723430444, ...];
n=4: [1, 3, 16, 130, 0, -199016, -29893568, -4657391616, ...];
n=5: [1, 4, 27, 302, 4541, 0, -16486865, -3372747590, ...];
n=6: [1, 5, 40, 522, 10416, 251976, 0, -1833979680, ...];
n=7: [1, 6, 55, 796, 17877, 567562, 20138467, 0, ...];
n=8: [1, 7, 72, 1130, 27200, 958968, 44592256, 2176638976, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + x*A*(x*A^2)' +x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A-1; A[#A] = -Vec( exp(-m * x*Ser(A)^2 ) * (2 - 1/Ser(A)))[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A-1; A[#A] = -Vec( exp(-m^2 * x*Ser(A)^2 ) * (m+1 - m/Ser(A)))[#A]/m ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2018
STATUS
approved