login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317353
G.f. satisfies: A(x) = 1 + x*A(x) * ( d/dx x*A(x)^3 ).
3
1, 1, 7, 85, 1391, 27852, 650161, 17204220, 506849175, 16418826823, 579491009098, 22126506842782, 908765624923517, 39955891685644210, 1872870160239756648, 93252093750481971120, 4916210973540632697015, 273627175793531458018185, 16036039197194394497206285, 987180880355901292395754555, 63693966375385851829434069094
OFFSET
0,3
LINKS
FORMULA
O.g.f. A(x) satisfies:
(1) A(x) = 1 + x*A(x) * ( d/dx x*A(x)^3 ).
(2) [x^n] exp( n * x*A(x)^3 ) / A(x) = 0 for n>0.
(3.a) [x^n] exp(-n * x*A(x)^3) * (2 - 1/A(x)) = 0 for n >= 1.
(3.b) [x^n] exp(-n^2 * x*A(x)^3) * (n + 1 - n/A(x)) = 0 for n >= 1.
(3.c) [x^n] exp(-n^(p+1) * x*A(x)^3) * (n^p + 1 - n^p/A(x)) = 0 for n>=1 and for fixed integer p >= 0.
a(n) ~ c * 3^n * n! * n^(4/3), where c = 0.147653317889315463510794506... - Vaclav Kotesovec, Aug 09 2018
EXAMPLE
O.g.f.: A(x) = 1 + x + 7*x^2 + 85*x^3 + 1391*x^4 + 27852*x^5 + 650161*x^6 + 17204220*x^7 + 506849175*x^8 + 16418826823*x^9 + ...
where A(x) = 1 + x*A(x)^4 + 3*x^2*A(x)^3*A'(x).
RELATED TABLE.
The table of coefficients of x^k/k! in exp( n*x*A(x)^3 ) / A(x) begins:
n=1: [1, 0, -7, -326, -23619, -2514244, -367699955, -70373452722, ...];
n=2: [1, 1, 0, -184, -17344, -2038008, -313614848, -61905013280, ...];
n=3: [1, 2, 9, 0, -9555, -1469682, -250952499, -52305865308, ...];
n=4: [1, 3, 20, 232, 0, -795496, -178628288, -41455820640, ...];
n=5: [1, 4, 33, 518, 11597, 0, -95428955, -29221983590, ...];
n=6: [1, 5, 48, 864, 25536, 934056, 0, -15457466592, ...];
n=7: [1, 6, 65, 1276, 42141, 2025842, 109167637, 0, ...];
n=8: [1, 7, 84, 1760, 61760, 3296568, 233751616, 17329568992, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + x*A*(x*A^3)' +x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A-1; A[#A] = -Vec( exp(-m * x*Ser(A)^3 ) * (2 - 1/Ser(A)))[#A] ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A-1; A[#A] = -Vec( exp(-m^2 * x*Ser(A)^3 ) * (m+1 - m/Ser(A)))[#A]/m ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2018
STATUS
approved