login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317351
G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).
4
1, 2, 6, 16, 154, 4584, 130464, 3816304, 123180090, 4422532004, 175136909492, 7585703878304, 356923128965592, 18139717839708536, 990827454743868120, 57910782633622271952, 3607453763547725076028, 238660376246383050751764, 16714929289459273370819900, 1235688614706272361317140840, 96170725583233854961162923028
OFFSET
0,2
COMMENTS
G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317356.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1),
(2) A(x) = Sum_{n>=0} ( (1+x)^(n+1) + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.23137523927... - Vaclav Kotesovec, Aug 07 2018
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 154*x^4 + 4584*x^5 + 130464*x^6 + 3816304*x^7 + 123180090*x^8 + 4422532004*x^9 + 175136909492*x^10 + ...
such that A = A(x) satisfies
A(x) = 1/(2 - A) + ((1+x)^2 - A)/(2 - (1+x)*A)^2 + ((1+x)^3 - A)^2/(2 - (1+x)^2*A)^3 + ((1+x)^4 - A)^3/(2 - (1+x)^3*A)^4 + ((1+x)^5 - A)^4/(2 - (1+x)^4*A)^5 + ((1+x)^6 - A)^5/(2 - (1+x)^5*A)^6 + ...
Also,
A(x) = 1/(2 + A) + ((1+x)^2 + A)/(2 + (1+x)*A)^2 + ((1+x)^3 + A)^2/(2 + (1+x)^2*A)^3 + ((1+x)^4 + A)^3/(2 + (1+x)^3*A)^4 + ((1+x)^5 + A)^4/(2 + (1+x)^4*A)^5 + ((1+x)^6 + A)^5/(2 + (1+x)^5*A)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A = Vec( sum(m=0, #A, ( (1+x)^(m+1) - Ser(A) )^m / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A341838 A325790 A144690 * A296108 A118305 A139629
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2018
STATUS
approved