login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317348
E.g.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - exp(-n*x) )^n = 1.
2
1, 1, 3, 31, 783, 35551, 2465943, 238958791, 30604867023, 4988281843471, 1006426188747783, 246050857141536151, 71658459729884788863, 24512979124556543501791, 9733113984959380709677623, 4440214540533789234079579111, 2306721251730615059447461056303, 1354037785009235729190621178158511
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1/A(x) - exp(-n*x) )^n.
(2) A(x) = Sum_{n>=0} ( 1/A(x) - exp(-(n+1)*x) )^n.
(3) 1 = Sum_{n>=0} exp(-(n+1)*x) * ( 1/A(x) - exp(-(n+1)*x) )^n.
(4) A(x)^2 = 2*A(x) * [ Sum_{n>=0} (n+1) * ( 1/A(x) - exp(-(n+1)*x) )^n ] - [ Sum_{n>=0} (n+1) * ( 1/A(x) - exp(-(n+2)*x) )^n ].
(5) A(x) = [ Sum_{n>=1} n*(n+1)/2 * exp(-(n+1)*x) * ( 1/Ser(A) - exp(-(n+1)*x) )^(n-1) ] / [ Sum_{n>=1} n^2 * exp(-n*x) * ( 1/Ser(A) - exp(-n*x) )^(n-1) ].
a(n) ~ sqrt(Pi) * n^(2*n + 1/2) / (4*sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Aug 10 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 31*x^3/3! + 783*x^4/4! + 35551*x^5/5! + 2465943*x^6/6! + 238958791*x^7/7! + 30604867023*x^8/8! + 4988281843471*x^9/9! + ...
such that
1 = 1 + (1/A(x) - exp(-x)) + (1/A(x) - exp(-2*x))^2 + (1/A(x) - exp(-3*x))^3 + (1/A(x) - exp(-4*x))^4 + (1/A(x) - exp(-5*x))^5 + (1/A(x) - exp(-6*x))^6 + (1/A(x) - exp(-7*x))^7 + (1/A(x) - exp(-8*x))^8 + ...
Also,
A(x) = 1 + (1/A(x) - exp(-2*x)) + (1/A(x) - exp(-3*x))^2 + (1/A(x) - exp(-4*x))^3 + (1/A(x) - exp(-5*x))^4 + (1/A(x) - exp(-6*x))^5 + (1/A(x) - exp(-7*x))^6 + (1/A(x) - exp(-8*x))^7 + (1/A(x) - exp(-9*x))^8 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - exp(-(m+1)*x +x*O(x^#A)) )^m ) )[#A]/2 ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A317349.
Sequence in context: A196457 A136370 A373873 * A144416 A362846 A227787
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2018
STATUS
approved