The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196457 E.g.f.: A(x) = Sum_{n>=0} exp((2^n + (-1)^n)*x) * (2^n + (-1)^n)^n * x^n/n!. 3
 1, 3, 31, 729, 96895, 35927793, 81108563671, 567783612614529, 19581520178825073535, 2420011073132910603900513, 1292280969200128366004695992151, 2658679109878459106807828064662797809, 22431208469091982323298987880694649428158815, 748294346623782293365235855701111498805828889778353 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS GENERAL BINOMIAL IDENTITY. When p=-1, q=2, this sequence illustrates the following identity. Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!, then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n =  Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n; which is a special case of the more general binomial identity: Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k. LINKS FORMULA GENERATING FUNCTIONS. E.g.f.: Sum_{n>=0} (2^n + (-1)^n)^n * exp( (2^n + (-1)^n)*x ) * x^n/n!. O.g.f.: Sum_{n>=0} (2^n + (-1)^n)^n * x^n / (1 - (2^n + (-1)^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019 FORMULAS FOR TERMS. a(n) = Sum_{k=0..n} C(n,k)*(2^k + (-1)^k)^n. EXAMPLE E.g.f.: A(x) = 1 + 3*x + 31*x^2/2! + 729*x^3/3! + 96895*x^4/4! +... where A(x) = exp((1+1)*x) + (2-1)*exp((2-1)*x)*x + (2^2+1)^2*exp((2^2+1)*x)*x^2/2! + (2^3-1)^3*exp((2^3-1)*x)*x^3/3! +... or, equivalently, A(x) = exp(2*x) + 1*exp(1*x)*x + 5^2*exp(5*x)*x^2/2! + 7^3*exp(7*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 31^5*exp(31*x)*x^5/5! +... Illustrate the formula for the terms: a(1) = (1+1) + (2-1) = 3 ; a(2) = (1+1)^2 + 2*(2-1)^2 + (2^2+1)^2 = 2^2 + 2*1^2 + 5^2 = 31 ; a(3) = (1+1)^3 + 3*(2-1)^3 + 3*(2^2+1)^3 + (2^3-1)^3 = 2^3 + 3*1^3 + 3*5^3 + 7^3 = 729 ; a(4) = (1+1)^4 + 4*(2-1)^4 + 6*(2^2+1)^4 + 4*(2^3-1)^4 + (2^4+1)^4 = 2^4 + 4*1^4 + 6*5^4 + 4*7^4 + 17^4 = 96895. PROG (PARI) {a(n)=n!*polcoeff(sum(m=0, n, exp((2^m+(-1)^m+x*O(x^n))*x)*(2^m+(-1)^m)^m*x^m/m!), n)} (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(2^k + (-1)^k)^n)} (PARI) {a(n)=local(p=-1, q=2); n!*polcoeff(sum(m=0, n, (p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!), n)} (PARI) {a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1); sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)} (PARI) /* right side of the general binomial identity: */ {a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1); sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)} CROSSREFS Cf. A138247, A196458, A196459, A196460. Sequence in context: A092552 A322487 A300735 * A136370 A317348 A144416 Adjacent sequences:  A196454 A196455 A196456 * A196458 A196459 A196460 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 17:00 EDT 2021. Contains 347670 sequences. (Running on oeis4.)