login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092552 Let X_{m,n}(q) be the chromatic polynomial of the complete bipartite graph K_{m,n}. Then a(n) is the negative of the coefficient of the linear term of X_{n,n}(q). 12
0, 1, 3, 31, 675, 25231, 1441923, 116914351, 12764590275, 1805409270031, 321113303226243, 70146437009397871, 18462286083671614275, 5762225835975165678031, 2104263061425865873128963, 888881838896989670838028591, 430058409024841744606172532675 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..238

FORMULA

From Alois P. Heinz, Apr 30 2012: (Start)

a(n) = (-1) * [q] Sum_{j=1..n} (q-j)^n*S2(n,j)*Product_{i=0..j-1} (q-i).

a(n) = (-1) * A212084(n,2n-1). (End)

E.g.f.: Sum_{n>=1} (1 - exp(-n*x))^n / n. - Paul D. Hanna, Dec 06 2012

a(n) = Sum_{k=1..n} k!*(k-1)! * Stirling2(n, k)^2. - Paul D. Hanna, Dec 30 2012, corrected by Vaclav Kotesovec, Jun 21 2013

O.g.f.: Sum_{n>=1} n^(n-1) * n! * x^n / Product_{k=1..n} (1 + n*k*x). - Paul D. Hanna, Jan 05 2013

a(n) = A136126(2*n-1,n), where triangle A136126(n,k) is the number of permutations of {1,2,...,k+n} having excedance set {1,2,...,k}. - Paul D. Hanna, Feb 01 2013

a(n) ~ sqrt(Pi) * n^(2*n-1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n)). - Vaclav Kotesovec, Nov 07 2014

a(n) = A306209(2n-1,n-1) for n > 0. - Alois P. Heinz, Feb 01 2019

EXAMPLE

a(2) = 3 since the chromatic polynomial of K_{2,2}(q) is q^4-4*q^3+6*q^2-3*q.

E.g.f.: A(x) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! +...

where A(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 +... - Paul D. Hanna, Dec 06 2012

O.g.f.: F(x) = x + 3*x^2 + 31*x^3 + 675*x^4 + 25231*x^5 +...

where F(x) = x/(1+x) + 2^1*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^2*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^3*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +... - Paul D. Hanna, Jan 05 2013

MAPLE

a:= n-> -coeff(add(Stirling2(n, k) *mul(q-i, i=0..k-1)

             *(q-k)^n, k=1..n), q, 1):

seq(a(n), n=0..20);  # Alois P. Heinz, Apr 30 2012

MATHEMATICA

Table[Sum[k!*(k-1)!*StirlingS2[n, k]^2, {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 21 2013 *)

PROG

(PARI) {a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k*x+x*O(x^n)))^k/k), n)} \\ Paul D. Hanna, Dec 06 2012

for(n=0, 20, print1(a(n), ", "))

(PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}

{a(n)=if(n<=0, 0, sum(k=1, n, k!*(k-1)! * Stirling2(n, k)^2))} \\ Paul D. Hanna, Dec 30 2012

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1)*m!*x^m/prod(k=1, m, 1+m*k*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 05 2013

CROSSREFS

Cf. A008277, A212084, A220179, A136126, A306209.

Sequence in context: A222895 A105293 A104841 * A322487 A300735 A196457

Adjacent sequences:  A092549 A092550 A092551 * A092553 A092554 A092555

KEYWORD

nonn

AUTHOR

Michael Lugo (mtlugo(AT)mit.edu), Apr 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 01:43 EST 2019. Contains 330013 sequences. (Running on oeis4.)