login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136126
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,k+n} having excedance set {1,2,...,k} (the empty set for k=0), 0 <= k <= n-1.
10
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 31, 15, 1, 1, 31, 115, 115, 31, 1, 1, 63, 391, 675, 391, 63, 1, 1, 127, 1267, 3451, 3451, 1267, 127, 1, 1, 255, 3991, 16275, 25231, 16275, 3991, 255, 1, 1, 511, 12355, 72955, 164731, 164731, 72955, 12355, 511, 1
OFFSET
1,5
COMMENTS
The excedance set of a permutation p in S_n is the set of indices i such that p(i) > i.
Columns 1,2,3,4 yield A000225, A091344, A091347, A091348, respectively. Row sums yield A136127.
T(a+b-1,b-1)*(-1)^(a+b-1) = Sum_{k=0..} F(a,b,k)*(-1)^k where F(a,b,k) is the number of connected subgraphs of K(a,b) (the complete bipartite graph) with k edges. F(n,n,k) is A255192(n,k). - Thomas Dybdahl Ahle, Feb 18 2015 [The sum starts with k=0, and F(n,n,k) is A255192(n,k), but there seems to be no A255192(n,0). Is there no upper k-summation limit? - Wolfdieter Lang, Mar 15 2015]
Comment from Don Knuth, Aug 25 2020, added by N. J. A. Sloane, Sep 07 2020: (Start)
This array also arises from a problem about {0,1}-matrices. Symmetric array read by antidiagonals: A(n,k) (n >= 1, k >= 0) = number of n X k matrices of 0's and 1's satisfying two conditions: (i) no column is entirely 0; (ii) no 0 has simultaneously a 1 above it and another 1 to its left.
Equivalently (see the Steingrímsson-Williams reference) A(n,k) is the number of permutations p_1...p_{n+k} on {1,...,n+k} for which p_1 >= 1, ..., p_n >= n, p_{n+1} < n+1,..., p_{n+k} < n+k. Then A(n,k) = A(k+1,n-1), for n >= 1 and k >= 0.
For example, the seven 2 X 2 matrices satisfying (i) and (ii) are
00 01 10 10 11 11 11
11 11 01 11 00 01 11
and the seven permutations of {1, 2, 3, 4} satisfying the other definition are
1423, 2413, 3412, 3421, 4213, 4312, 4321.
(End)
LINKS
Tsuneo Arakawa and Masanobu Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J., 153:189-209, 1999.
Arvind Ayyer, Daniel Hathcock, and Prasad Tetali, Toppleable Permutations, Excedances and Acyclic Orientations, arXiv:2010.11236 [math.CO], 2020. Mentions this sequence.
Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, arXiv:2104.13654 [math.CO], Apr. 2021. (See table 1.)
Beáta Bényi and Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684 [math.CO], 2016. See C_{n,k}.
Beáta Bényi and Matthieu Josuat-Vergès, Combinatorial proof of an identity on Genocchi numbers, arXiv:2010.10060 [math.CO], 2020.
Taylor Brysiewicz and Aida Maraj, Lawrence Lifts, Matroids, and Maximum Likelihood Degrees, arXiv:2310.13064 [math.CO], 2023. See p. 13.
E. Clark and R. Ehrenborg, Explicit expressions for the extremal excedance statistic, European J. Combinatorics, 31, 2010, 270-279 (Theorem 3.1).
Bérénice Delcroix-Oger, Florent Hivert, Patxi Laborde-Zubieta, Jean-Christophe Aval, and Adrien Boussicault, Non-ambiguous trees: New results and generalisation (full version), arXiv:2103.07294 [cs.DM], 2021 (Proposition 1.8).
R. Ehrenborg and E. Steingrimsson, The excedance set of a permutation, Advances in Appl. Math., 24, 284-299, 2000 (Proposition 6.5).
Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024 (see Eq. (16.1)).
Toshiki Matsusaka, Symmetrized poly-Bernoulli numbers and combinatorics, arXiv:2003.12378 [math.NT], 2020. Table 1.
Einar Steingrímsson and Lauren K Williams, Permutation tableaux and permutation patterns, Journal of Combinatorial Theory, A 114 (2007), 211-234.
Julius Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik. 94:203-232, 1883.
FORMULA
T(n,k) = Sum_{i=1..k+1} (-1)^(k+1-i)*i!*i^(n-1-k)*Stirling2(k+1,i) (0 <= k <= n-1).
G.f.: A(x,y) = x*y*Sum_{n>=1} n! * x^n*Product_{k=1..n} (1 + y + k*x*y) / (1 + (1+y)*k*x + k^2*x^2*y). - Paul D. Hanna, Feb 01 2013
Central terms of triangle equals A092552. - Paul D. Hanna, Feb 01 2013
T(n,k-1) = Sum_{i=0..k, m=0..i} binomial(i,m)*(-1)^(k-m)*i^(n-k)*m^k (1 <= k <= n). - Thomas Dybdahl Ahle, Feb 18 2015
E.g.f.: log(1/(1-(exp(x)-1)*(exp(y)-1))). - Vladimir Kruchinin, Apr 17 2015
Let W(n,k) = k!*Stirling2(n+1, k+1) denote the Worpitzky numbers, then A(n,k) = Sum_{j=0..k} (-1)^(k-j)*W(k,j)*(j+1)^(n+1) enumerates the square array. - Peter Luschny, Mar 14 2018
Assume the missing first row (1,0,0,...) of the array which Ayyer and Bényi call the 'poly-Bernoulli numbers of type C'. Then T(n, k) = p_{n}(k) where p_{n}(x) = Sum_{k=0..n} (-1)^(n-k)*(k+1)^x*Sum_{j=0..n} E1(n,j)*binomial(n-j, n-k), and E1(n, k) are the Eulerian numbers of first order. This reflects the Worpitzky approach to the Bernoulli numbers. This formula can alternatively be written as: T(n, k) = Sum_{j=0..k} (-1)^(k-j)*(j+1)^n*A028246(k+1, j+1). - Peter Luschny, Apr 29 2021
EXAMPLE
T(4,2) = 7 because 3412, 4312, 2413, 2314, 2431, 3421 and 4321 are the only permutations of {1,2,3,4} with excedance set {1,2}.
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 31, 15, 1;
1, 31, 115, 115, 31, 1;
1, 63, 391, 675, 391, 63, 1;
1, 127, 1267, 3451, 3451, 1267, 127, 1;
1, 255, 3991, 16275, 25231, 16275, 3991, 255, 1;
...
Formatted as a square array A(n,k) with 0 <= k <= n:
1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
1, 3, 7, 15, 31, 63, 127, 255, ... [A000225]
1, 7, 31, 115, 391, 1267, 3991, 12355, ... [A091344]
1, 15, 115, 675, 3451, 16275, 72955, 316275, ... [A091347]
1, 31, 391, 3451, 25231, 164731, 999391, 5767051, ... [A091348]
1, 63, 1267, 16275, 164731, 1441923, 11467387, 85314915, ...
1, 127, 3991, 72955, 999391, 11467387, 116914351, 1096832395, ...
MAPLE
with(combinat): T:=proc(n, k) if k < n then add((-1)^(k+1-i)*factorial(i)*i^(n-1-k)* stirling2(k+1, i), i=1..k+1) else 0 end if end proc: for n to 10 do seq(T(n, k), k=0..n-1) end do; # yields sequence in triangular form
# Alternatively as a square array:
A := (n, k) -> add((-1)^(k-j)*j!*Stirling2(k+1, j+1)*(j+1)^(n+1), j=0..k);
seq(print(seq(A(n, k), k=0..7)), n=0..6); # Peter Luschny, Mar 14 2018
# Using the exponential generating function as given by Arakawa & Kaneko:
gf := polylog(-t, 1-exp(-x))/(exp(x)-1):
ser := series(gf, x, 12): c := n -> n!*coeff(ser, x, n):
seq(lprint(seq(subs(t=k, c(n)), n=0..8)), k=0..8); # Peter Luschny, Apr 29 2021
# Using recurrence relations:
A := proc(n, k) option remember; local j; if n = 0 then return k^n fi;
add(binomial(k+1, j+1)*A(n-1, k-j), j = 0..k) end:
for n from 0 to 7 do lprint(seq(A(n, k), k=0..8)) od; # Peter Luschny, Apr 19 2024
MATHEMATICA
T[n_, k_] := Sum[(-1)^(k + 1 - i)*i!*i^(n - 1 - k)*StirlingS2[k + 1, i], {i, 1, k + 1}];
Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)
PROG
(PARI) {T(n, k)=polcoeff(polcoeff( x*y*sum(m=0, n, m!*x^m*prod(k=1, m, (1+y+k*x*y)/(1+(1+y)*k*x+k^2*x^2*y +x*O(x^n))) ), n, x), k, y)} \\ Paul D. Hanna, Feb 01 2013
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print(""))
(PARI) tabl(nn) = {default(seriesprecision, nn+1); pol = log(1/(1-(exp(x)-1)*(exp(y)-1))) + O(x^nn); for (n=1, nn-1, poly = n!*polcoeff(pol, n, x); for (k=1, n, print1(k!*polcoeff(poly, k, y), ", "); ); print(); ); } \\ Michel Marcus, Apr 17 2015
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jan 17 2008
EXTENSIONS
Definition corrected. Changed "T(n,k) is the number of permutations of {1,2,...,n}..." to "T(n,k) is the number of permutations of {1,2,...,k+n}..." - Karel Casteels (kcasteel(AT)sfu.ca), Feb 17 2010
STATUS
approved