login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220179
E.g.f.: Sum_{n>=1} (1 - exp(-n^2*x))^n / n.
6
1, 15, 1267, 316275, 174397531, 179770837155, 310789895286907, 834906367019076675, 3293344593080631993211, 18259284528276047000517795, 137429981152689382429349060347, 1365009985652048448232840864764675, 17475885712645599218827214639383437691
OFFSET
1,2
COMMENTS
Compare to the trivial identity: x = Sum_{n>=1} (1 - exp(-x))^n/n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.
LINKS
FORMULA
O.g.f.: Sum_{n>=1} n^(2*n-1) * n! * x^n / Product_{k=1..n} (1 - n^2*k*x). - Paul D. Hanna, Jan 05 2013
a(n) = Sum_{k=1..n} (-1)^(n-k) * k^(2*n-1) * k! * Stirling2(n,k). - Paul D. Hanna, Jan 05 2013
a(n) ~ c * d^n * (n!)^3 / n^2, where d = 6.8312860494079582446988970296645779575650627187418208311407895492635... and c = 0.175744118254830086361220160145768507562830495967... . - Vaclav Kotesovec, May 08 2014
EXAMPLE
E.g.f.: A(x) = x + 15*x^2/2! + 1267*x^3/3! + 316275*x^4/4! + 174397531*x^5/5! +...
where
A(x) = (1-exp(-x)) + (1-exp(-4*x))^2/2 + (1-exp(-9*x))^3/3 + (1-exp(-16*x))^4/4 + (1-exp(-25*x))^5/5 +...
MATHEMATICA
Table[Sum[(-1)^(n-k) * k^(2*n-1) * k! * StirlingS2[n, k], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, May 08 2014 *)
PROG
(PARI) a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k^2*x+x*O(x^n)))^k/k), n)
for(n=1, 20, print1(a(n), ", "))
(PARI) a(n)=polcoeff(sum(m=1, n, m^(2*m-1)*m!*x^m/prod(k=1, m, 1+m^2*k*x+x*O(x^n))), n) \\ Paul D. Hanna, Jan 05 2013
for(n=1, 20, print1(a(n), ", "))
(PARI) {a(n)=sum(k=1, n, (-1)^(n-k)*k^(2*n-1)*k!*stirling(n, k, 2))}
for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2012
STATUS
approved