login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242228
a(n) = Sum_{k=1..n} k^(2*n-1) * k! * Stirling2(n,k).
5
1, 17, 1651, 473741, 300257371, 355743405917, 706872713310331, 2182548723605418941, 9894910566488309801851, 63052832687428562206049117, 545439670961897317869306191611, 6226501736967631584015448186252541, 91619831483112536750163352484302283131
OFFSET
1,2
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^3 / n^2, where d = r^3*(1+exp(2/r)) = 7.8512435106631367719817991716164612615296980032514..., r = 0.94520217245242431308104743874492469552738... is the root of the equation (1+exp(-2/r))*LambertW(-exp(-1/r)/r) = -1/r, and c = 0.15095210978787998524366903417512193343948127919...
E.g.f.: Sum_{k>=1} (exp(k^2*x) - 1)^k / k. - Seiichi Manyama, Jun 19 2024
MATHEMATICA
Table[Sum[k^(2*n-1) * k! * StirlingS2[n, k], {k, 1, n}], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 08 2014
STATUS
approved