login
A242230
Primes p of the form p^2 + q + 1 where p < q are consecutive primes.
2
61, 4561, 9511, 17299, 19471, 26737, 30109, 37447, 49957, 69439, 94561, 196699, 209311, 259603, 317539, 333517, 352249, 414097, 427069, 459013, 678157, 845491, 886429, 943819, 1027189, 1217719, 1410163, 1472587, 1647379, 2165323, 2200777, 2230549, 2603389
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 61 = 7^2 + 11 + 1: 61 is prime, 7 and 11 are consecutive primes.
a(2) = 4561 = 67^2 + 71 + 1: 4561 is prime, 67 and 71 are consecutive primes.
MAPLE
with(numtheory): A242230:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)+1); if isprime(k) then RETURN (k); fi; end: seq(A242230 (), x=1..500);
MATHEMATICA
A242230 = {}; Do[p = Prime[n]^2 + Prime[n + 1] + 1; If[PrimeQ[p], AppendTo[A242230, p]], {n, 500}]; A242230
Select[#[[1]]^2+#[[2]]+1&/@Partition[Prime[Range[300]], 2, 1], PrimeQ] (* Harvey P. Dale, Mar 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 08 2014
STATUS
approved