login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242233
2^n*(C_n)^(1/2) in the Cauchy type product where C_n is the n-th Catalan number.
1
1, 1, 3, 11, 41, 137, 347, 611, 5777, 98321, 677363, -4192197, -134908871, -617972327, 22749265099, 449951818387, -632325203423, -163681108703199, -2324079456844573, 33233931805782635, 1734259111955765577, 14135975420529458857, -777499293367428199109
OFFSET
0,3
FORMULA
a(n) = 2^n*n!*[x^n](sqrt(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x)))), where [x^n](f(x)) the coefficient of x^n in f(x).
For n > 0, a(n) = Sum_{k=1..n} a(n-k)*binomial(n,k)*(2*k)!*(3*k/(2*n)-1)*2^k/(k!*(k+1)!). - Tani Akinari, Nov 05 2024
MAPLE
f := sqrt(exp(2*x)*(BesselI(0, 2*x)-BesselI(1, 2*x)));
seq(2^n*n!*coeff(series(f, x, n+1), x, n), n=0..22);
# Second program with function g from A241885:
catalan := n -> binomial(2*n, n)/(n+1);
a := n -> 2^n*g(catalan, n); seq(a(n), n=0..22);
MATHEMATICA
g[n_] := g[n] = (CatalanNumber[n] - Sum[Binomial[n, m] g[m] g[n - m], {m, 1, n - 1}])/2;
a[0] = 1; a[n_] := 2^n g[n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Aug 02 2019, from 2nd Maple program *)
PROG
(Maxima) a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(n, k)*(2*k)!*(3*k/(2*n)-1)*2^k/(k!*(k+1)!), k, 1, n); makelist(a[n], n, 0, 50); /* Tani Akinari, Nov 05 2024 */
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, May 08 2014
STATUS
approved